Crystallization and preliminary X-ray diffraction studies of the calcium-binding protein CalD from Streptomyces coelicolor.

Acta Crystallogr Sect F Struct Biol Cryst Commun

Laboratory of Structural Biology, Tsinghua University, Beijing 100084, People's Republic of China.

Published: September 2008

Calcium ions play an important regulatory role in eukaryotes. However, the regulatory roles of Ca(2+) in prokaryotes are poorly understood. CalD, an 18 kDa calcium-binding protein from the model actinomycete Streptomyces coelicolor A3(2), was purified and crystallized for structure determination by X-ray crystallography. Crystals of CalD that were suitable for X-ray diffraction were obtained using the hanging-drop vapour-diffusion method and diffraction data were collected in-house to 1.56 A resolution. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 32.9, b = 51.0, c = 87.0 A, alpha = beta = gamma = 90.0 degrees . There is one protein molecule per asymmetric unit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2531264PMC
http://dx.doi.org/10.1107/S1744309108019891DOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
8
calcium-binding protein
8
streptomyces coelicolor
8
crystallization preliminary
4
preliminary x-ray
4
diffraction studies
4
studies calcium-binding
4
protein cald
4
cald streptomyces
4
coelicolor calcium
4

Similar Publications

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.

View Article and Find Full Text PDF

High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone.

Nat Commun

January 2025

Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.

View Article and Find Full Text PDF

Effects of isolation methods on physicochemical properties of defatted starch from the acorn (Quercus brantii).

Int J Biol Macromol

January 2025

Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; ONIRIS - GEPEA (UMR CNRS 6144), Site de la Géraudière CS 82225, 44322, Nantes cedex 3, France.

This study explores the innovative combined effects of alkaline isolation with ultrasound pretreatment on the physicochemical properties of acorn (Quercus brantii) starch. The optimal pH for maximizing the yield of alkaline-isolated acorn starch (AAS) was determined, followed by comparison with alkaline-isolated defatted acorn starch (ADAS), ultrasound-pretreated acorn starch (UAS), and ultrasound-pretreated defatted acorn starch (UDAS). The results demonstrated substantial improvements in yield and purity, with the highest yield (68.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!