Shugoshin-2 (SGOL2) is one of the two mammalian orthologs of the Shugoshin/Mei-S322 family of proteins that regulate sister chromatid cohesion by protecting the integrity of the multiprotein cohesin complexes. This protective system is essential for faithful chromosome segregation during mitosis and meiosis, which is the physical basis of Mendelian inheritance. Regardless of its evolutionary conservation from yeast to mammals, little is known about the in vivo relevance and specific role that SGOL2 plays in mammals. Here we show that disruption of the gene encoding mouse SGOL2 does not cause any alteration in sister chromatid cohesion in embryonic cultured fibroblasts and adult somatic tissues. Moreover, mutant mice develop normally and survive to adulthood without any apparent alteration. However, both male and female Sgol2-deficient mice are infertile. We demonstrate that SGOL2 is necessary for protecting centromeric cohesion during mammalian meiosis I. In vivo, the loss of SGOL2 promotes a premature release of the meiosis-specific REC8 cohesin complexes from anaphase I centromeres. This molecular alteration is manifested cytologically by the complete loss of centromere cohesion at metaphase II leading to single chromatids and physiologically with the formation of aneuploid gametes that give rise to infertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532928 | PMC |
http://dx.doi.org/10.1101/gad.475308 | DOI Listing |
Mol Oncol
January 2025
Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Korea.
The dynamics of focal adhesions (FAs) are essential physiological processes involved in cell spreading, metastasis, and regulation of the actin cytoskeleton. FAs are complex structures comprising proteins, such as paxillin and zyxin, which interact with extracellular membranes and influence cell motility and morphology. Although related studies have been reported in various cancers, the function and molecular mechanisms of oral squamous cell carcinoma (OSCC) remain unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.
In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules.
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.
: Invasive breast cancer (BC) was traditionally investigated visually, and no technique could identify the key molecular drivers of patient survival. However, essential molecular drivers of invasive BC have now been discovered using innovative genomic, transcriptomic, and proteomic methodologies. Nevertheless, few evaluations of the prognostic factors of BC in Saudi Arabia have been performed.
View Article and Find Full Text PDFTurk J Gastroenterol
December 2024
Department of Emergency Medicine, Shandong University, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Qingdao, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered the most widespread chronic liver condition globally. Genome-wide association studies (GWAS) have pinpointed several genetic loci correlated to MASLD, yet the biological significance of these loci remains poorly understood. Initially, we applied Functional Mapping and Annotation (FUMA) to conduct a functional annotation of the MASLD GWAS summary statistics, which included data from 3242 cases and 707 631 controls.
View Article and Find Full Text PDFPreserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!