ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC(50)s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range. Growth inhibition was strictly associated with the depletion of the parasite's main endogenous sterols and the concomitant accumulation of exogenous cholesterol. Using electron microscopy, we identified the intracellular structures affected by the compounds. A large number of lipid inclusions displaying different shapes and electron densities were observed after treatment with both SQS inhibitors, and these inclusions were associated with an intense disorganization of the membrane that surrounds the cell body and flagellum, as well as the endoplasmic reticulum and the Golgi complex. Cells treated with ER-119884 but not those treated with E5700 had an altered cytoskeleton organization due to an abnormal distribution of tubulin, and many were arrested at cytokinesis. A prominent contractile vacuole and a phenotype typical of programmed cell death were frequently found in drug-treated cells. The selectivity of the drugs was demonstrated with the JC-1 mitochondrial fluorescent label and by trypan blue exclusion tests with macrophages, which showed that the IC(50)s against the host cells were 4 to 5 orders of magnitude greater that those against the intracellular parasites. Taken together, our results show that ER-119884 and E5700 are unusually potent and selective inhibitors of the growth of Leishmania amazonensis, probably because of their inhibitory effects on de novo sterol biosynthesis at the level of SQS, but some of our observations indicate that ER-119884 may also interfere with other cellular processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573141 | PMC |
http://dx.doi.org/10.1128/AAC.01616-07 | DOI Listing |
J Infect Chemother
August 2011
Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Bloco G, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-970, Brazil.
Three quinuclidine-based squalene synthase (SQS) inhibitors (BPQ-OH, E5700, and ER-119884) were evaluated against five Candida tropicalis strains with different susceptibility profiles to fluconazole (FLC), itraconazole (ITC), terbinafine (TRB), and amphotericin B (AMB). Although the quinuclidine derivatives were inactive against most C. tropicalis strains tested at concentrations up to 16 μg/ml, E5700 and ER-119884 showed antifungal activity against C.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2008
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brazil.
ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC(50)s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range.
View Article and Find Full Text PDFJ Antimicrob Chemother
July 2006
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho CCS Universidade Federal do Rio de Janeiro, 21949-900-Rio de Janeiro-RJ, Brazil.
Objectives: To study the antiproliferative effects of ER119884 and E5700, two quinuclidine-based inhibitors of squalene synthase (SQS), against Toxoplasma gondii tachyzoites in epithelial cells.
Methods: The antiproliferative effects of the quinuclidine derivatives, alone or in combination with epiminolanosterol or antifolates, were analysed, resulting in the construction of isobolograms. The ultrastructure of treated tachyzoites was analysed by transmission electron microscopy.
Antimicrob Agents Chemother
July 2004
Instituto Venezolano de Investigaciones, Centro de Bioquimica y Biofisica, Altos de Pipe, Caracas 1020, Venezuela.
Chagas' disease is a serious public health problem in Latin America, and no treatment is available for the prevalent chronic stage. Its causative agent, Trypanosoma cruzi, requires specific endogenous sterols for survival, and we have recently demonstrated that squalene synthase (SQS) is a promising target for antiparasitic chemotherapy. E5700 and ER-119884 are quinuclidine-based inhibitors of mammalian SQS that are currently in development as cholesterol- and triglyceride-lowering agents in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!