In the present work, we studied the effect of the selective cyclooxygenase-2 (COX-2) inhibitors, compound 11 g, celecoxib and selective COX-1 inhibitor SC-560 (intraperitoneally and acutely) on striatal glutamatergic and dopaminergic neurotransmission in normal and substantia nigra pars compacta (SNc)-lesioned rats using the microdialysis technique. We also investigated the effect of acute COX inhibition on the damaged SNc neurons. Our results indicate a significant increase in dopaminergic neurotransmission and a decrease in glutamatergic neurotransmission (P<0.05) only after selective COX-2 inhibition in the striatum of normal and hemiparkinsonian rats. Nonetheless, neither COX-1 nor COX-2 inhibitors showed any improvement in the damaged SNc neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-7843.2008.00295.xDOI Listing

Publication Analysis

Top Keywords

glutamatergic neurotransmission
8
selective cyclooxygenase-2
8
dopaminergic neurotransmission
8
dopaminergic glutamatergic
4
neurotransmission
4
neurotransmission increased
4
increased striatum
4
striatum selective
4
cyclooxygenase-2 inhibition
4
inhibition normal
4

Similar Publications

Conversion of silent synapses to AMPA receptor-mediated functional synapses in human cortical organoids.

Neurosci Res

December 2024

Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:

Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202511000-00029/figure1/v/2024-12-20T164640Z/r/image-tiff Neuronal activity, synaptic transmission, and molecular changes in the basolateral amygdala play critical roles in fear memory. Cylindromatosis (CYLD) is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.

View Article and Find Full Text PDF

Monosynaptic ventral tegmental area glutamate projections to the locus coeruleus enhance aversive processing.

bioRxiv

December 2024

Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.

Distinct excitatory synaptic inputs to the locus coeruleus (LC) modulate behavioral flexibility. Here we identify a novel monosynaptic glutamatergic input to the LC from the ventral tegmental area (VTA). We show robust VTA axonal projections provide direct glutamatergic transmission to LC.

View Article and Find Full Text PDF

Variations of blood D-serine and D-aspartate homeostasis track psychosis stages.

Schizophrenia (Heidelb)

December 2024

CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.

Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage.

View Article and Find Full Text PDF

Background: Administration of conventional anaesthetic agents is associated with changes in electroencephalogram (EEG) oscillatory dynamics, including a reduction in the peak alpha frequency. Computational models of neurones can reproduce such phenomena and are valuable tools for investigating their underlying mechanisms. We hypothesised that EEG data acquired during xenon anaesthesia in humans would show similar changes in peak alpha frequency and that computational neuronal models of recognised cellular actions of xenon would be consistent with the observed changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!