AI Article Synopsis

  • Gutless oligochaete worms, found in marine sediments worldwide, rely on symbiotic sulfur-oxidizing bacteria for survival, particularly in low-sulfide environments like Mediterranean sea grass beds.
  • Research confirmed the presence of both sulfate-reducing and sulfur-oxidizing symbionts in the gutless worm species O. ilvae, with findings similar to the previously studied O. algarvensis.
  • A new fifth symbiont, related to Spirochaetes, was identified in O. algarvensis, while O. ilvae lacked this symbiont but shared other similar microbial partners, highlighting the importance of sulfur cycling in their ecological success.

Article Abstract

Gutless oligochaete worms are found worldwide in the pore waters of marine sediments and live in symbiosis with chemoautotrophic sulfur-oxidizing bacteria. In the Mediterranean, two species of gutless oligochaete worms, Olavius algarvensis and O. ilvae, co-occur in sediments around sea grass beds. These sediments have extremely low sulfide concentrations (< 1 microM), raising the question if O. ilvae, as shown previously for O. algarvensis, also harbours sulfate-reducing symbionts that provide its sulfur-oxidizing symbionts with reduced sulfur compounds. In this study, we used fluorescence in situ hybridization (FISH) and comparative sequence analysis of genes for 16S rRNA, sulfur metabolism (aprA and dsrAB), and autotrophic carbon fixation (cbbL) to examine the microbial community of O. ilvae and re-examine the O. algarvensis symbiosis. In addition to the four previously described symbionts of O. algarvensis, in this study a fifth symbiont belonging to the Spirochaetes was found in these hosts. The symbiotic community of O. ilvae was similar to that of O. algarvensis and also included two gammaproteobacterial sulfur oxidizers and two deltaproteobacterial sulfate reducers, but not a spirochete. The phylogenetic and metabolic similarity of the symbiotic communities in these two co-occurring host species that are not closely related to each other indicates that syntrophic sulfur cycling provides a strong selective advantage to these worms in their sulfide-poor environment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2008.01728.xDOI Listing

Publication Analysis

Top Keywords

gutless oligochaete
12
oligochaete worms
12
sea grass
8
ilvae algarvensis
8
community ilvae
8
algarvensis
5
multiple bacterial
4
symbionts
4
bacterial symbionts
4
symbionts species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!