For a newly discovered iron-based high T_{c} superconductor LaFeAsO1-xFx, we have constructed a minimal model, where inclusion of all five Fe d bands is found to be necessary. The random-phase approximation is applied to the model to investigate the origin of superconductivity. We conclude that the multiple spin-fluctuation modes arising from the nesting across the disconnected Fermi surfaces realize an extended s-wave pairing, while d-wave pairing can also be another candidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.101.087004 | DOI Listing |
Phys Rev Lett
October 2024
Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria.
We present an analytically solvable model for correlated electrons, which is able to capture the major Fermi surface modifications occurring in both hole- and electron-doped cuprates as a function of doping. The proposed Hamiltonian qualitatively reproduces the results of numerically demanding many-body calculations, here obtained using the dynamical vertex approximation. Our analytical theory provides a transparent description of a precise mechanism, capable of driving the formation of disconnected segments along the Fermi surface (the highly debated "Fermi arcs"), as well as the opening of a pseudogap in hole and electron doping.
View Article and Find Full Text PDFPhys Rev Lett
January 2023
Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
Intriguingly, quantum many-body systems may defy thermalization even without disorder. One example is so-called fragmented models, where the many-body Hilbert space fragments into dynamically disconnected subspaces that are not determined by the global symmetries of the model. In this Letter we demonstrate that the tilted one-dimensional Fermi-Hubbard model naturally realizes distinct effective Hamiltonians that are expected to support nonergodic behavior due to fragmentation, even at resonances between the tilt energy and the Hubbard on site interaction.
View Article and Find Full Text PDFNature
March 2022
Ames Laboratory, Ames, Iowa, USA.
The Fermi surface plays an important role in controlling the electronic, transport and thermodynamic properties of materials. As the Fermi surface consists of closed contours in the momentum space for well-defined energy bands, disconnected sections known as Fermi arcs can be signatures of unusual electronic states, such as a pseudogap. Another way to obtain Fermi arcs is to break either the time-reversal symmetry or the inversion symmetry of a three-dimensional Dirac semimetal, which results in formation of pairs of Weyl nodes that have opposite chirality, and their projections are connected by Fermi arcs at the bulk boundary.
View Article and Find Full Text PDFNat Commun
October 2021
Instituto de Nanociencia y Nanotecnología CNEA-CONICET, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina.
The paradigm of Landau's Fermi liquid theory has been challenged with the finding of a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. A spin-1 two-channel Kondo impurity with anisotropy D has a quantum phase transition between two topologically different Fermi liquids with a peak (dip) in the Fermi level for D < D (D > D). Extending this theory to general multi-orbital problems with finite magnetic field, we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) that were previously described in disconnected and conflicting ways.
View Article and Find Full Text PDFPhys Rev Lett
October 2020
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA.
We analyze a quantum-classical hybrid system of steadily precessing around the fixed axis slow classical localized magnetic moments (LMMs), forming a head-to-head domain wall, surrounded by fast electrons driven out of equilibrium by LMMs and residing within a metallic wire whose connection to macroscopic reservoirs makes electronic quantum system an open one. The model captures the essence of dynamical noncollinear magnetic textures encountered in spintronics, while making it possible to obtain the exact time-dependent nonequilibrium density matrix of electronic systems and split it into four contributions. The Fermi surface contribution generates dissipative (or dampinglike in spintronics terminology) spin torque on LMMs, as the counterpart of electronic friction in nonadiabatic molecular dynamics (MD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!