Local density of states of one-dimensional Mott insulators and charge-density wave states with a boundary.

Phys Rev Lett

The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP Oxford, United Kingdom.

Published: August 2008

We determine the local density of states of one-dimensional incommensurate charge-density wave states in the presence of a strong impurity potential, which is modeled by a boundary. We find that the charge-density wave gets pinned at the impurity, which results in a singularity in the Fourier transform of the local density of states at momentum 2k_{F}. At energies above the spin gap we observe dispersing features associated with the spin and charge degrees of freedom, respectively. In the presence of an impurity magnetic field we observe the formation of a bound state localized at the impurity. All of our results carry over to the case of 1D Mott insulators by exchanging the roles of spin and charge degrees of freedom. We discuss the implications of our result for scanning tunneling microscopy experiments on spin-gap systems such as two-leg ladder cuprates.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.101.086403DOI Listing

Publication Analysis

Top Keywords

local density
12
density states
12
charge-density wave
12
states one-dimensional
8
mott insulators
8
wave states
8
spin charge
8
charge degrees
8
degrees freedom
8
states
5

Similar Publications

Background: Neuroimaging studies have shown that hypothalamic/thalamic nuclei and other distant brain regions belonging to complex cerebral networks are involved in cluster headache (CH). However, the exact relationship between these areas, which may be dependent or independent, remains to be understood. We investigated differences in resting-state functional connectivity (FC) between brain networks and its relationship with the microstructure of the hypothalamus and thalamus in patients with episodic CH outside attacks and healthy controls (HCs).

View Article and Find Full Text PDF

Dyspnea with Hemidiaphragm Elevation in a Patient with Giant Cell Arteritis: A Case Report.

Intern Med

January 2025

Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Japan.

We herein report the first case of dyspnea with hemidiaphragm elevation in a 68-year-old woman with active giant cell arteritis (GCA), including successful treatment. Contrast-enhanced computed tomography showed a reduced density of the left ophthalmic artery and the left superficial temporal artery with increased soft tissue compared to the other side, indicating that the GCA had flared up and suggesting that the hemidiaphragm elevation might be caused by vasculitis-associated ischemia of the right phrenic nerve. Hemidiaphragm paralysis due to vasculitis-associated ischemia in patients with GCA needs to be distinguished from local infection, tumors, and hepatomegaly, which are the major causes of hemidiaphragm elevation.

View Article and Find Full Text PDF

Doping Tunable CDW Phase Transition in Bulk 1T-ZrSe.

Nano Lett

January 2025

Department of Quantum Matter Physics, University of Geneva, 24, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.

Tunable electronic properties in transition metal dichalcogenides (TMDs) are essential to further their use in device applications. Here, we present a comprehensive scanning tunneling microscopy and spectroscopy study of a doping-induced charge density wave (CDW) in semiconducting bulk 1T-ZrSe. We find that atomic impurities that locally shift the Fermi level () into the conduction band trigger a CDW reconstruction concomitantly to the opening of a gap at .

View Article and Find Full Text PDF

Transcranial Brain Atlas Based on Photon Measurement Density Function in a Triple-Parameter Standard Channel Space.

Neuroimage

January 2025

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China. Electronic address:

Functional near-infrared spectroscopy (fNIRS) is a widely-used transcranial brain imaging technique in neuroscience research. Nevertheless, the lack of anatomical information from recordings poses challenges for designing appropriate optode montages and for localizing fNIRS signals to underlying anatomical regions. The photon measurement density function (PMDF) is often employed to address these issues, as it accurately measures the sensitivity of an fNIRS channel to perturbations of absorption coefficients at any brain location.

View Article and Find Full Text PDF

We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!