We study pattern formation during tensile deformation of confined viscoelastic layers. The use of a model system [poly(dimethylsiloxane) with different degrees of cross-linking] allows us to go continuously from a viscous liquid to an elastic solid. We observe two distinct regimes of fingering instabilities: a regime called "elastic" with interfacial crack propagation, where the fingering wavelength scales only with the film thickness, and a bulk regime called "viscoelastic," where the fingering instability shows a Saffman-Taylor-like behavior. We find good quantitative agreement with theory in both cases and present a reduced parameter describing the transition between the two regimes and allowing us to predict the observed patterns over the whole range of viscoelastic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.101.074503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!