When an ultrathin metal film of thickness h (<20 nm) is melted by a nanosecond pulsed laser, the film temperature is a nonmonotonic function of h and achieves its maximum at a certain thickness h*. This is a consequence of the h and time dependence of energy absorption and heat flow. Linear stability analysis and nonlinear dynamical simulations that incorporate such intrinsic interfacial thermal gradients predict a characteristic pattern length scale Lambda that decreases for h>h*, in contrast to the classical spinodal dewetting behavior where Lambda increases monotonically as h2. These predictions agree well with experimental observations for Co and Fe films on SiO2.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.101.017802DOI Listing

Publication Analysis

Top Keywords

novel self-organization
4
self-organization mechanism
4
mechanism ultrathin
4
ultrathin liquid
4
liquid films
4
films theory
4
theory experiment
4
experiment ultrathin
4
ultrathin metal
4
metal film
4

Similar Publications

Active matter, from motile bacteria to animals, can exhibit striking collective and coherent behavior. Despite significant advances in understanding the behavior of homogeneous systems, little is known about the self-organization and dynamics of heterogeneous active matter, such as complex and diverse bacterial communities. Under oxygen gradients, many bacterial species swim towards air-liquid interfaces in auto-organized, directional bioconvective flows, whose spatial scales exceed the cell size by orders of magnitude.

View Article and Find Full Text PDF

The 2025 Motile Active Matter Roadmap.

J Phys Condens Matter

January 2025

Biozentrum, University of Basel, Spitalstrasse 41, Basel, Basel-Stadt, 4056, SWITZERLAND.

Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials.

View Article and Find Full Text PDF

Estrogen Deficiency alters Vascularization and Mineralization dynamics: insight from a novel 3D Humanized and Vascularized Bone Organoid Model.

Am J Physiol Cell Physiol

January 2025

Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Ireland.

Osteoporosis is not merely a disease of bone loss but also involves changes in the mineral composition of the bone that remains. studies have investigated these changes and revealed that estrogen deficiency alters osteoblast mineral deposition, osteocyte mechanosensitivity and osteocyte regulation of osteoclastogenesis. During healthy bone development, vascular cells stimulate bone mineralization via endochondral ossification, but estrogen deficiency impairs vascularization.

View Article and Find Full Text PDF

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

Sonogenetics is a novel antiarrhythmic mechanism.

Chaos

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.

Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!