Equation-of-state measurement of dense plasmas heated with fast protons.

Phys Rev Lett

Texas Center for High Intensity Laser Science, Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA.

Published: July 2008

Using an ultrafast pulse of mega-electron-volt energy protons accelerated from a laser-irradiated foil, we have heated solid density aluminum plasmas to temperatures in excess of 15 eV. By measuring the temperature and the expansion rate of the heated Al plasma simultaneously and with picosecond time resolution we have found the predictions of the SESAME Livermore equation-of-state (LEOS) tables to be accurate to within 18%, in this dense plasma regime, where there have been few previous experimental measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.101.015002DOI Listing

Publication Analysis

Top Keywords

equation-of-state measurement
4
measurement dense
4
dense plasmas
4
plasmas heated
4
heated fast
4
fast protons
4
protons ultrafast
4
ultrafast pulse
4
pulse mega-electron-volt
4
mega-electron-volt energy
4

Similar Publications

The density (ρ), speed of sound (), and refractive index ( ) of ,-dimethylacetamide (DMA) with 1-butanol, 1-pentanol, furfural (FFL), or furfuryl alcohol (FA) as a function of composition and at = 293.15 to 323.15 K with an interval of 10 K and atmospheric pressure were measured.

View Article and Find Full Text PDF

The thermal conductivity of liquid -1,2-dichloroethene (R-1130(E)) was measured at temperatures ranging from 240 K to 340 K and pressures up to 25 MPa using a transient hot-wire instrument. A total of 447 thermal conductivity data points were measured along six isotherms. Each isotherm includes data at nine pressures, which were chosen to be at equal density increments starting at a pressure of 0.

View Article and Find Full Text PDF

Sound speed data measured using a dual-path pulse-echo instrument are reported for pure -1,2-dichloroethene (R-1130(E)) and an azeotropic blend of -1,1,1,4,4,4-hexafluorobutene (R-1336mzz(Z)) and R-1130(E) with a composition of 74.8 mass % R-1336mzz(Z) with the balance being R-1130(E). The azeotropic blend of R-1336mzz(Z)/1130(E) is classified as R-514A in ANSI/ASHRAE standard 34.

View Article and Find Full Text PDF

In the present study, the solubility of sulfasalazine in carbon dioxide was investigated at temperatures ranging from 313 K to 343 K and pressures ranging from 12 to 30 MPa. The experimentally determined molar solubilities of sulfasalazine in ScCO were found to be in the range of 4.08 × 10 to 8.

View Article and Find Full Text PDF

Anomalous pressure-density relations and speed of sound in bubbly water systems.

J Chem Phys

November 2024

Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA.

The speed of sound in bubbly water is an important parameter in the wave equations governing pressure-density relations for turbulent multi-phase flow simulations. Recent molecular simulation results indicate that, for bubbles that are thermodynamically stable at finite volume conditions, the derivative of total pressure P with density ρ has a negative sign, complicating the interpretation of the speed of sound. We show that such a negative compressibility is thermodynamically consistent in a single-component two-phase model at finite volume, and identify an empirically derived equation of state to illustrate that this observation is not an artifact of small simulation length scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!