The formation and evolution of a collisional aluminum plasma jet created by optical laser irradiation of triangular grooves with pulses of 120ps duration at an intensity of 1x10(12)W cm(-2) were studied with experiments and simulations. Series of high-contrast soft x-ray laser interferograms obtained with a 46.9nm laser mapped the plasma density evolution of an initially narrow plasma jet that expands along the symmetry plane and evolves into a broader plasma plume with significant side lobes. Two-dimensional simulations performed using the radiation hydrodynamic code HYDRA reveal that the jet formation is initiated by accelerated material ablated from the vertex and is augmented by the continual sequential arrival of wall material along the symmetry plane, where it collides and is redirected outward. Radiative cooling is identified as an important process in maintaining the collimation of the jet. These results demonstrate that well collimated collisional plasma jets with parameters in a range of interest can be generated with low-energy laser pulses (<1J) , opening the possibility of studying relevant plasma phenomena in a small laboratory setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.78.016403 | DOI Listing |
Space Sci Rev
December 2024
Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, Graz, 8042 Austria.
Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
AC plasmas directly excited within liquid hydrocarbons were investigated for the production of hydrogen and unsaturated C hydrocarbon in a recirculating liquid "jet" flow configuration. Arc discharges were excited at two different frequencies (60 Hz and 17.3 kHz) in C-C hydrocarbons (hexane, cyclohexane, benzene, toluene, and xylene) to produce H, CH, CH, and CH, along with liquid and solid carbon byproducts.
View Article and Find Full Text PDFCells
November 2024
Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050657 Bucharest, Romania.
Due to its antimicrobial, anti-inflammatory and pro-healing properties, the application of cold atmospheric plasma (CAP) has emerged as a new and promising therapeutic strategy in various fields of medicine, including general medicine and dentistry. In this light, the aim of the present study was to investigate the effects of a homemade plasma jet on the cellular behaviour of two important cell types involved in gingivitis, namely gingival fibroblasts (HGF-1 cell line) and macrophages (RAW 264.7 cell line), by the direct application of CAP in different experimental conditions.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
The presence of petroleum hydrocarbon components (PHCs) in biological oily sludge increases the toxicity of the sludge and makes dewatering even more difficult. In this study, an atmospheric pressure plasma jet (APPJ) technology was used for treating biological oily sludge. The results showed that under specific conditions-a sludge/water ratio of 1:100, a discharge power of 440 W, and a 60-min treatment-the degradation rate of PHCs reached 36.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland.
Massive material injections in the JET tokamak have been observed to substantially affect resistive bolometer measurements, resulting in a spurious radiated power signal proportional to the quantity injected and reaching up to 8 MW. These bolometers are calibrated and designed to operate in near vacuum but certain scenarios requiring large gas injections can push the neutral pressure past nominal values. This study demonstrates that the bolometry measurement can be affected at neutral pressures above 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!