Water molecules immobilized on a protein or DNA surface are known to play an important role in intramolecular and intermolecular interactions. Comparative analysis of related three-dimensional (3D) structures allows to predict the locations of such water molecules on the protein surface. We have developed and implemented the algorithm WLAKE detecting "conserved" water molecules, i.e. those located in almost the same positions in a set of superimposed structures of related proteins or macromolecular complexes. The problem is reduced to finding maximal cliques in a certain graph. Despite exponential algorithm complexity, the program works appropriately fast for dozens of superimposed structures. WLAKE was used to predict functionally significant water molecules in enzyme active sites (transketolases) as well as in intermolecular (ETS-DNA complexes) and intramolecular (thiol-disulfide interchange protein) interactions. The program is available online at http://monkey.belozersky.msu.ru/~evgeniy/wLake/wLake.html.

Download full-text PDF

Source
http://dx.doi.org/10.1142/s0219720008003588DOI Listing

Publication Analysis

Top Keywords

water molecules
20
intramolecular intermolecular
8
intermolecular interactions
8
superimposed structures
8
molecules
5
water
5
conserved water
4
molecules x-ray
4
structures
4
x-ray structures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!