Probiotic effects on intestinal fermentation patterns in patients with irritable bowel syndrome.

World J Gastroenterol

Department of Medicine, and Department of Gastroenterology, Monash University, Box Hill Hospital, Box Hill, Victoria 3128, Australia.

Published: August 2008

Aim: To determine whether Lactobacillus casei strain Shirota (Yakult) can alter small intestinal bacterial overgrowth (SIBO), as tested by the lactulose breath test, and whether this is associated with changes in symptoms in irritable bowel syndrome (IBS).

Methods: 18 patients with IBS (Rome II criteria), who showed an early rise in breath hydrogen with lactulose (ERBHAL), consumed 65 mL of Yakult daily for 6 wk. Lactulose breath test was repeated at the end of the treatment period. Symptoms were recorded daily using a 10 cm visual analogue scale.

Results: 14 patients completed the study, 9 (64%) had reversal of ERBHAL, with the median time of first rise in breath hydrogen increasing from 45 to 75 min (P = 0.03). There was no significant improvement in the symptom score with probiotic therapy, except for wind (P = 0.04). Patients commencing with at least moderate symptoms and who no longer had ERBHAL at the end of treatment, showed improvement in the overall symptoms scores [median final score 5.3 (IQR 3.9-5.9), 55% reduction; n = 6] to a greater extent than those who had had persisting ERBHAL [final score 6.9 (5.0-7.0), 12% reduction; n = 5; P = 0.18].

Conclusion: Yakult is effective in altering fermentation patterns in the small bowel, consistent with reducing SIBO. The loss of ERBHAL was associated with reduced symptoms. The true interpretation of these findings awaits a randomised, controlled trial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742929PMC
http://dx.doi.org/10.3748/wjg.14.5020DOI Listing

Publication Analysis

Top Keywords

fermentation patterns
8
irritable bowel
8
bowel syndrome
8
lactulose breath
8
breath test
8
rise breath
8
breath hydrogen
8
symptoms
5
erbhal
5
probiotic effects
4

Similar Publications

The systemic evolutionary theory of the origin of cancer (SETOC): an update.

Mol Med

January 2025

Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy.

The Systemic Evolutionary Theory of the Origin of Cancer (SETOC) is a recently proposed theory founded on two primary principles: the cooperative and endosymbiotic process of cell evolution as described by Lynn Margulis, and the integration of complex systems operating in eukaryotic cells, which is a core concept in systems biology. The SETOC proposes that malignant transformation occurs when cells undergo a continuous adaptation process in response to long-term injuries, leading to tissue remodeling, chronic inflammation, fibrosis, and ultimately cancer. This process involves a maladaptive response, wherein the 'endosymbiotic contract' between the nuclear-cytoplasmic system (derived from the primordial archaeal cell) and the mitochondrial system (derived from the primordial α-proteobacterium) gradually breaks down.

View Article and Find Full Text PDF

The genus , commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all strains in food applications.

View Article and Find Full Text PDF

Objective: To describe demographics, causative pathogens, hospitalization, mortality, and antimicrobial resistance of bacterial bloodstream infections (BSIs) among beneficiaries in the global U.S. Military Health System (MHS), a single-provider healthcare system with 10-year longitudinal follow-up.

View Article and Find Full Text PDF

Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests.

View Article and Find Full Text PDF

Machine learning assisted multi-signal nanozyme sensor array for the antioxidant phenolic compounds intelligent recognition.

Food Chem

January 2025

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China. Electronic address:

Identifying antioxidant phenolic compounds (APs) in food plays a crucial role in understanding their biological functions and associated health benefits. Here, a bifunctional Cu-1,3,5-benzenetricarboxylic acid (Cu-BTC) nanozyme was successfully prepared. Due to the excellent laccase-like behavior of Cu-BTC, it can catalyze the oxidation of various APs to produce colored quinone imines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!