We examined the biodiversity of bacteria associated with oyster-shell waste during a 1-year storage period using 16S ribosomal DNA analysis. Temperature variation and structural changes of oyster shell were observed during storage. Initial and final temperatures were at 16-17 degrees C, but a high temperature of about 60 degrees C was recorded after approximately 6 months of storage. The crystal structure and nanograin of the oyster shell surface were sharp and large in size initially and became gradually blunter and smaller over time. Phylogenetic analysis revealed that Firmicutes were dominant in the oyster-shell waste initially, during the high-temperature stage, and after 1 year of storage (making up >65% of the biodiversity at all three sampling times). Bacillus licheniformis was presumed as the predominate Firmicutes present. These bacteria are likely to have important roles in the biodegradation of oyster shell.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-008-9439-yDOI Listing

Publication Analysis

Top Keywords

oyster shell
16
structural changes
8
changes oyster
8
1-year storage
8
oyster-shell waste
8
storage
5
bacterial diversity
4
diversity structural
4
oyster
4
shell
4

Similar Publications

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF

Anaerobic digestion is a sustainable technology for methane (CH) production from organic waste and wastewater. However, its performance is frequently hindered by excessive acidification in readily acidified substrates, such as starch wastewater. Oyster shell (OS), a natural alkaline material, effectively regulates pH and enhances CH production.

View Article and Find Full Text PDF

This study investigates the process of synthesizing eco-cement clinker using recycled powdered glass (RPG) and oyster shell residue (OSHL) as primary raw materials. Analysis of the mineral composition of RPG revealed that it primarily consists of silica and contains a high level of alkali metal oxides, while OSHL comprises a high-purity trigonal calcite structure, similar in chemical composition to limestone. Comparative analysis of the synthesized ecological cement and its hydration products showed that, after heat treatment at 1200 °C, the alkali metal content in the H12 sample significantly decreased, thereby meeting the standards for cement raw materials.

View Article and Find Full Text PDF

Taxonomic diversity and functional potential of microbial communities in oyster calcifying fluid.

Appl Environ Microbiol

December 2024

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.

Unlabelled: Creating and maintaining an appropriate chemical environment is essential for biomineralization, the process by which organisms precipitate minerals to form their shells or skeletons, yet the mechanisms involved in maintaining calcifying fluid chemistry are not fully defined. In particular, the role of microorganisms in facilitating or hindering animal biomineralization is poorly understood. Here, we investigated the taxonomic diversity and functional potential of microbial communities inhabiting oyster calcifying fluid.

View Article and Find Full Text PDF

Soil acidification limits crop and pasture production and leads to the degradation of agroecosystems. A substantial volume of seafood shells are discarded each year, which creates enormous environmental and social pressures. In this study, the anaerobic pyrolysis characteristics of four types of seafood shells (clam, scallop, oyster, and mussel) were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!