Download full-text PDF

Source

Publication Analysis

Top Keywords

[effect formaldehyde
4
formaldehyde inhalation
4
inhalation red
4
red blood
4
blood cell
4
cell number
4
number hemoglobin
4
hemoglobin level
4
level mice]
4
[effect
1

Similar Publications

Tuning multi-scale pore structures in carbonaceous films via direct ink writing and sacrificial templates for efficient indoor formaldehyde removal.

J Hazard Mater

January 2025

Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China. Electronic address:

The primary challenges impeding the extensive application of adsorption for indoor air purification have been low efficiency and effective capacity. To fill the research gap, we developed carbonaceous net-like adsorption films featuring multi-scale porous structures for efficient indoor formaldehyde removal. By optimizing the interfacial mass transfer and internal diffusion, we designed macro- to mesoscale meshes on the film surface and micro- to nano-scale pores within the materials, which were achieved by direct-ink-writing (DIW) printing and sacrificial template methods, respectively.

View Article and Find Full Text PDF

Association between exposure to environmental pollutants and increased oral health risks, a comprehensive review.

Front Public Health

January 2025

Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.

The burden of disease and death attributable to environmental pollution is a growing public health challenge worldwide, particularly in developing countries. While the adverse effects of environmental pollution on oral health have garnered increasing attention, a comprehensive and systematic assessment remains lacking. This article delves into the intricate relationship between environmental pollution and oral health, highlighting significant impacts on various aspects such as dental caries, periodontal diseases, oral facial clefts, cancer, as well as other oral diseases.

View Article and Find Full Text PDF

A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.

View Article and Find Full Text PDF

This study describes the process of developing a high-impact, low-cost, and low-maintenance air ventilation system for anatomy facilities. It employed the strategic application of Value Engineering (VE), assuring that the air ventilation system meets contemporary threshold limit values (TLVs) for formaldehyde in the working zone of dissection tables. A creative-innovative construction methodology was used, combining the Theory of Inventive Problem Solving (TRIZ/TIPS) and VE for an anatomy laboratory air ventilation concept.

View Article and Find Full Text PDF

Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!