The wastewater from an acrylonitrile manufacturing plant, which is difficult to biodegrade, was decomposed in subcritical and supercritical water. Experiments were carried out at temperature ranging from 299 to 552 degrees C and a pressure of 25 MPa. The initial total organic carbon (TOC) of acrylonitrile wastewater was set from 0.27 to 2.10 mol L(-1) with residence times ranging from 3 to 30s. 30 wt.% H(2)O(2) solution was used as an oxidant with the stoichiometric ratios of O(2) based on the initial TOC concentration ranging from 0.5 to 2.5. TOC conversion increased with increasing reaction temperature and residence time, however, beyond the stoichiometric oxygen-TOC ratio of 1:1, TOC conversion was barely affected by excess oxygen. The initial TOC concentration of acrylonitrile wastewater also had a negligible effect on TOC conversion. An assumed pseudo-first-order global rate expression was determined with an activation energy of 53.48(+/-33.57)kJ mol(-1) and a pre-exponential factor of 5.22(+/-1.74)x10(2)s(-1). By considering the dependence of the reaction rate on TOC and O(2) concentration, a global rate expression was regressed from the complete set of 64 data points. The resulting activation energy was 66.33(+/-5.87)kJ mol(-1); the pre-exponential factor was 6.07(+/-6.89)x10(3)mol(-0.26)s(-1); and the reaction orders for initial TOC and O(2) concentration were 1.26(+/-0.15) and 0.00(+/-0.15), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2008.07.069 | DOI Listing |
Curr Microbiol
December 2024
Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China.
Freshwater ecosystem is a significant natural source of CH emission in the atmosphere. To fully understand the dynamics of methane emissions in reservoirs, it is essential to grasp the temporal and vertical distribution patterns, as well as the factors that influence the methanogenic bacterial communities within the sediments. This study investigates the methane dynamics, carbon isotope fractionation (δCH), and abundance of functional microorganisms along the geochemical gradient in the in situ sedimentary column of Hongfeng Reservoir (China).
View Article and Find Full Text PDFWater Res
December 2024
Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM). Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico.
The Electro-Fenton process (EF) has been conventionally applied to efficiently degrade refractory and/or toxic pollutants. However, in this work, EF was used as a reverse engineering tool to selectively synthesize highly value-added products (oxalic or oxamic acid) through the degradation of the model pollutant acetaminophen, a widely used analgesic and antipyretic drug. It was found that the production of either oxalic or oxamic acid is dictated by the applied current density.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China. Electronic address:
The high concentration of metal compounds found in red mud (RM) can serve as cost-effective raw materials for photo Fenton catalysts in the treatment of organic dye wastewater. In this study, RM was modified with bagasse using a hydrothermal method to prepare a photo-Fenton catalyst. The degradation efficiency of Rhodamine (RhB) solution under different conditions was evaluated.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel 24105, Germany.
The metabolism of phytoplankton cells is synchronized with the diel light cycle. Likewise, associated heterotrophic bacteria adjust their diel expression of transporter- and catabolism-related genes to target the dissolved organic matter released by the phytoplankton cell. Dissolved combined carbohydrates (DCCHO) and dissolved amino acids (DAA) are major phytoplankton products and bacterial substrates.
View Article and Find Full Text PDFACS ES T Water
December 2024
Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.
Wet chemical oxidation (WCO) methods measure total organic carbon (TOC) in aqueous solutions through the formation and detection of carbon dioxide (CO). Prior research documents chloride (Cl) interference during WCO. However, the mechanism that determines WCO interference is not established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!