Objective: To study effects of surface electric stimulation of the gluteal muscles on the interface pressure in seated persons with spinal cord injury (SCI).

Design: One session in which alternating and simultaneous surface electric stimulation protocols were applied in random order.

Setting: Research laboratory of a rehabilitation center.

Participants: Thirteen subjects with SCI.

Intervention: Surface electric stimulation of the gluteal muscles.

Main Outcome Measures: Interface pressure, maximum pressure, pressure spread, and pressure gradient for the stimulation measurement. Variables were compared using 2-tailed paired t tests.

Results: Alternating and simultaneous stimulation protocol caused a significant (P<.01) decrease in interface pressure (-17+/-12 mmHg, -19+/-14 mmHg) and pressure gradient (-12+/-11 mmHg, -14+/-12 mmHg) during stimulation periods compared with rest periods. There was no significant difference in effects between the 2 protocols.

Conclusions: Surface electric stimulation of the gluteal muscles in persons with SCI causes a decrease in interface pressure. This might restore blood flow in compressed tissue and help prevent pressure ulcers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apmr.2008.02.028DOI Listing

Publication Analysis

Top Keywords

surface electric
16
electric stimulation
16
stimulation gluteal
12
interface pressure
12
gluteal muscles
8
muscles interface
8
pressure seated
8
spinal cord
8
cord injury
8
alternating simultaneous
8

Similar Publications

Chiral and Quantum Plasmonic Sensors: New Frontiers in Selective and Ultra-Sensitive Sensing.

Small

January 2025

Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038, India.

Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmon Resonances (LSPRs) are fundamental phenomena in plasmonics that enable the confinement of electromagnetic waves beyond the diffraction limit. This confinement results in a significant enhancement of the electric field, making this phenomenon particularly beneficial for sensitive detection applications. However, conventional plasmonic sensors face several challenges, notably their difficulty in distinguishing chiral molecules, which are vital in drug development.

View Article and Find Full Text PDF

The preparation and modification of porous electrodes are an important component of the new generation electrochemical oxidation technology. Rapid preparation of porous electrodes can be easily achieved by synchronous oxygen bubble electrodeposition. However, according to the reaction mechanism of lead dioxide anodic electrodeposition, there is bound to be a competitive reaction of adsorbed hydroxyl radicals in the oxygen bubble template method, which means that synchronous OER impacts both the surface morphology and potentially the crystalline structure of the metal oxides.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

Surface Bi-vacancy and corona polarization engineered nanosheets with sonopiezocatalytic antibacterial activity for wound healing.

J Mater Chem B

January 2025

Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.

Piezocatalytic therapy is an emerging therapeutic strategy for eradicating drug-resistant bacteria, but suffers from insufficient piezoelectricity and catalytic active site availability. Herein, Bi-vacancies (BiV) and corona polarization were introduced to BiOBr nanosheets to create a BiOBr-BiVP nanoplatform for piezocatalytic antibacterial therapy. This meticulously tailored strategy strengthens the built-in electric field of nanosheets, enhancing piezoelectric potential and charge density and boosting charge separation and migration efficiency.

View Article and Find Full Text PDF

Flexible Eyelid Pressure and Motion Dual-Mode Sensor Using Electric Breakdown-Induced Piezoresistivity and Electrical Potential Sensing.

ACS Appl Mater Interfaces

January 2025

Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China.

Multiple ocular surface disorders are associated with the mechanical properties of the interface between the eyelid and cornea. Determining eyelid pressure is vital for diagnosing and preventing these disorders. However, current measurements rely on flat piezoresistive pressure sensor arrays that lack eye-motion sensing capabilities, resulting in discomfort and measurement inaccuracies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!