In this study a novel method of simultaneous gene transfection and cell delivery based on inkjet printing technology is described. Plasmids encoding green fluorescent protein (GFP) were coprinted with living cells (porcine aortic endothelial [PAE] cells) through the ink cartridge nozzles of modified commercial inkjet printers. Agarose gel electrophoresis analysis showed there was no obvious structural alteration or damage to these plasmids after printing. Transfection efficiency of the printed cells, determined by GFP expression, was over 10%, and posttransfection cell viability was over 90%. We showed that printing conditions, such as plasmid concentration, cartridge model, and plasmid size, influenced gene transfection efficiency. Moreover, genetically modified PAE cells were accurately delivered to target sites within a three-dimensional fibrin gel scaffold and expressed GFP in vitro and in vivo when implanted into mice. These results demonstrate that inkjet printing technology is able to simultaneously transfect genes into cells as well as precisely deliver these cell populations to target sites. This technology may facilitate the development of effective cell-based therapies by combining gene therapy with living cells that can be delivered to target sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.tea.2008.0095 | DOI Listing |
Pharmaceutics
December 2024
Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Background/objectives: In this study, HECP2k polymer, polyethylenimine2k (PEI2k)-modified hydroxyethyl cellulose (HEC) was utilized to form the nanocomplexes with receptor activator of nuclear factor k-B (RANK) siRNA and zoledronate (Zol) for osteoclast inhibition. HECP2k/(RANK siRNA + Zol) nanocomplexes prepared by simple mixing were anticipated to overcome the low transfection efficiency of siRNA and the low bioavailability of Zol.
Methods: The characterization of both HECP2k/(pDNA + Zol) nanocomplexes and HECP2k/(RANK siRNA + Zol) nanocomplexes was performed.
Microorganisms
December 2024
Program in Public Health, School of Medicine, University of California, Irvine, CA 92617, USA.
, a major vector of dengue virus (DENV), has a global distribution. Identifying the key components of the ubiquitin system of essential for the replication of viruses could help identify targets for developing broad-spectrum antiviral strategies. This study explores the interaction between E2 ubiquitin-conjugating enzymes (Ubc9) and DENV-2 proteins (NS1, NS5, and E) using cell culture and mosquito models.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
Background: αδ proteins regulate membrane trafficking and biophysical properties of voltage-gated calcium channels. Moreover, they modulate axonal wiring, synapse formation, and trans-synaptic signaling. Several rare missense variants in CACNA2D1 (coding for αδ-1) and CACNA2D3 (coding for αδ-3) genes were identified in patients with autism spectrum disorder (ASD).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
DNA polymerases frequently misincorporate ribonucleoside 5'-triphosphates into nascent DNA strands. This study examined the effects of an incorporated ribonucleoside on untargeted mutations in human cells. Riboguanosine (rG) was introduced into the downstream region of the gene to preferentially detect the untargeted mutations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany.
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!