Object: Statins have been used for induction of ischemic tolerance after cerebral ischemia. The authors have previously shown that simvastatin is protective after ischemic cerebral injury in normothermic conditions. In this study they further examined whether treatment with simvastatin can reduce ischemic brain injury in a hyperthermic condition.

Methods: Focal ischemic brain injury was induced by embolizing a preformed clot into the middle cerebral artery in rats. The authors initially examined whether treatment with simvastatin could reduce ischemic brain injury without or with hyperthermia. The infarct volume, edema, and neurological deficits were examined. They then studied whether simvastatin could reduce the perfusion deficits, damage to the blood-brain barrier (BBB), and degeneration of neurons in the ischemic injured brain.

Results: Simvastatin significantly reduced the infarct volume in both normothermic and hyperthermic conditions, compared with appropriate controls. Concomitantly, this treatment also significantly reduced neurological deficits and brain edema. Administration of simvastatin significantly decreased perfusion deficits, BBB permeability, and degenerated neurons.

Conclusions: These studies suggest that simvastatin is an effective agent for ischemic brain injury not only in normothermic but also in hyperthermic conditions, which may be through the decrease of BBB permeability, degenerated neurons, and perfusion deficits.

Download full-text PDF

Source
http://dx.doi.org/10.3171/JNS/2008/109/9/0522DOI Listing

Publication Analysis

Top Keywords

ischemic brain
20
brain injury
20
normothermic hyperthermic
12
hyperthermic conditions
12
simvastatin reduce
12
perfusion deficits
12
injury normothermic
8
examined treatment
8
treatment simvastatin
8
reduce ischemic
8

Similar Publications

Heart transplantation remains the ultimate treatment strategy for neonates and children with medically refractory end-stage heart failure and utilization of donors after circulatory death (DCD) can expand th donor pool. We have previously shown that mitochondrial transplantation preserves myocardial function and viability in neonatal swine DCD hearts to levels similar to that observed in donation after brain death (DBD). Herein, we sought to investigate the transcriptomic and proteomic pathways implicated in these phenotypic changes using ex situ perfused swine hearts.

View Article and Find Full Text PDF

Chronic ischemia in moyamoya disease (MMD) impaired white matter microstructure and neural functional network. However, the coupling between cerebral blood flow (CBF) and functional connectivity and the association between structural and functional network are largely unknown. 38 MMD patients and 20 sex/age-matched healthy controls (HC) were included for T1-weighted imaging, arterial spin labeling imaging, resting-state functional MRI and diffusion tensor imaging.

View Article and Find Full Text PDF

Objectives: Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neurostimulation technique that uses magnetic field to comprehensively influence events in the brain. Its use in patients after stroke focuses mainly on influencing brain neuroplasticity and therefore has the potential to improve motor functions in these patients. This study investigates the effect of rTMS on motor function recovery in patients in the acute stage of ischemic stroke.

View Article and Find Full Text PDF

Mixed Transcortical Aphasia (MTA) is an infrequent aphasic syndrome, characterized by poor comprehension and production in oral language abilities and poor performance in written language abilities. However, individuals with MTA typically retain the ability to repeat. Our patient, a woman who suffered from a left hemisphere ischemic stroke involving perisylvian areas, presented with repetition preserved for words, non-words, sentences and numbers, together with marginally preserved reading abilities.

View Article and Find Full Text PDF

Blood transfusions in craniotomy for tumor resection: Incidence, risk factors, and outcomes.

J Clin Neurosci

December 2024

Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan. Electronic address:

Background: Blood transfusions (BT) are often needed in neurosurgical procedures, especially craniotomies for tumor resections, due to risks of anemia, ischemic brain injury, and hemorrhage. However, BT may increase the risk of perioperative complications. This study aimed to determine the incidence, associated factors, and outcomes of BT in patients undergoing craniotomy for intracranial tumor resection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!