Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance. It is shown that ADSA-CSD has certain advantages over conventional methods. The ability to measure very low surface tension values (e.g., <2 mJ/m2), an easier deposition procedure than in a pendant drop setup, and leak-proof design make the constrained sessile drop constellation a better choice than the pendant drop constellation in many situations. Results of compression isotherms are obtained on three different monolayers: octadecanol, dipalmitoyl-phosphatidyl-choline (DPPC), and dipalmitoyl-phosphatidyl-glycerol (DPPG). The collapse pressures are found to be reproducible and in agreement with previous methods. For example, the collapse pressure of DPPC is found to be 70.2 mJ/m2. Such values are not achievable with a pendant drop. The collapse pressure of octadecanol is found to be 61.3 mJ/m2, while that of DPPG is 59.0 mJ/m2. The physical reasons for these differences are discussed. The results also show a distinctive difference between the onset of collapse and the ultimate collapse pressure (ultimate strength) of these films. ADSA-CSD allows detailed study of this collapse region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la801683q | DOI Listing |
Med Phys
January 2025
Breast Imaging Department, Red Cross Hospital Munich, Munich, Germany.
Background: A significant proportion of false positive recalls of mammography-screened women is due to benign breast cysts and simple fibroadenomas. These lesions appear mammographically as smooth-shaped dense masses and require the recalling of women for a breast ultrasound to obtain complementary imaging information. They can be identified safely by ultrasound with no need for further assessment or treatment.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Engineering, Center of Excellence in Energy Conversion, Sharif University of Technology, Tehran, Iran.
Dropwise condensation (DWC) is a widely studied vapor-liquid phase-change process that has attracted significant research attention due to its exceptional energy transfer efficiency. Therefore, it is highly important to predict the heat transfer rate during DWC and the factors that affect it. This study presents a computational fluid dynamics (CFD) investigation on DWC heat transfer under diverse circumstances for a single droplet on inclined and rough surfaces with Wenzel structure.
View Article and Find Full Text PDFIn this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.
View Article and Find Full Text PDFLangmuir
December 2024
State Key Laboratory of Coal Mine Disaster Prevention and Control, China University of Mining and Technology, Xuzhou 221116, China.
Quantifying the extent of desorption hysteresis is essential for establishing gas flow models. However, existing indices fail to adequately represent the changes in the actively mobile gas volume involved in transport, and experiments on the degree of hysteresis in negative-pressure environments are scarce. Therefore, this study conducted isothermal adsorption and desorption tests under both atmospheric- and negative-pressure conditions.
View Article and Find Full Text PDFBiomater Sci
December 2024
Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India.
Wound healing is a dynamic, multi-phase process that includes haemostasis, tissue regeneration, cellular proliferation, and matrix modification. Traditional wound care procedures frequently encounter complications such as delayed healing and infection, demanding new therapeutic approaches. In this context, nanomaterial-based devices provide considerable benefits due to their capacity to improve medication delivery and tissue healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!