Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic resonance spectroscopic imaging (MRSI) is currently used clinically in conjunction with anatomical MRI to assess the presence and extent of brain tumors and to evaluate treatment response. Unfortunately, the clinical utility of MRSI is limited by significant variability of in vivo spectra. Spectral profiles show increased variability because of partial coverage of large voxel volumes, infiltration of normal brain tissue by tumors, innate tumor heterogeneity, and measurement noise. We address these problems directly by quantifying the abundance (i.e. volume fraction) within a voxel for each tissue type instead of the conventional estimation of metabolite concentrations from spectral resonance peaks. This 'spectrum separation' method uses the non-negative matrix factorization algorithm, which simultaneously decomposes the observed spectra of multiple voxels into abundance distributions and constituent spectra. The accuracy of the estimated abundances is validated on phantom data. The presented results on 20 clinical cases of brain tumor show reduced cross-subject variability. This is reflected in improved discrimination between high-grade and low-grade gliomas, which demonstrates the physiological relevance of the extracted spectra. These results show that the proposed spectral analysis method can improve the effectiveness of MRSI as a diagnostic tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.1271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!