Objective: This study was undertaken to determine whether BAFF blockade can be used to prevent or treat antiphospholipid syndrome in a mouse model.

Methods: Eight- and 12-week-old (NZW x BXSB)F(1) mice were treated with BAFF-R-Ig or TACI-Ig alone or in addition to a short course of CTLA-4Ig. Mice were monitored for thrombocytopenia and proteinuria. Sera were tested for anticardiolipin antibodies (aCL), BAFF levels, and levels of soluble vascular cell adhesion molecule and E-selectin. Mice were killed at 17, 22, or 32 weeks of age, and kidneys and hearts were subjected to histologic examination. Spleen cells were phenotyped and enzyme-linked immunospot assays for autoantibody-producing B cells were performed.

Results: Both BAFF-R-Ig and TACI-Ig prevented disease onset and significantly prolonged survival. Treated mice had significantly smaller spleens than controls, with fewer B cells and fewer activated and memory T cells. BAFF blockade did not prevent the development of aCL, and there was only a modest delay in the development of thrombocytopenia. However, treated mice had significantly less nephritis and myocardial infarcts than did controls.

Conclusion: Our findings suggest that aCL are generated in the germinal center, which is relatively independent of BAFF. Effector function of antiplatelet antibodies was only modestly affected by BAFF blockade. In contrast, myocardial infarctions were prevented, suggesting that triggering of thromboses requires both autoantibodies and mediators of inflammation. Similarly, renal damage requires both immune complexes and effector cells. The dissociation between autoantibody production and inflammation that may occur with B cell-depleting therapies underscores the role of B cells as effector cells in the autoimmune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596604PMC
http://dx.doi.org/10.1002/art.23764DOI Listing

Publication Analysis

Top Keywords

baff blockade
16
antiphospholipid syndrome
8
blockade prevent
8
baff-r-ig taci-ig
8
treated mice
8
effector cells
8
cells
7
baff
6
mice
5
prevention murine
4

Similar Publications

Pharmacological Management of IgG4-Related Disease: From Traditional to Mechanism-Based Targeted Therapies.

Drugs Aging

January 2025

Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

IgG4-related disease (IgG4-RD) is an immune-mediated disorder characterized by organ enlargement and dysfunction. The formation of tertiary lymphoid tissues (TLTs) in affected organs is crucial for understanding IgG4-RD, as T follicular helper (Tfh) 2 cells within TLTs drive IgG4+B cell differentiation, contributing to mass formation. Key cytokines IL-4 and IL-10, produced by Tfh2 cells, are essential for this process.

View Article and Find Full Text PDF

Helicobacter infection is a key cause of gastric B cell mucosa-associated lymphoid tissue (MALT) lymphoma. This study examined the role of B cell-activating factor (BAFF), a major driver of B cell proliferation and many B cell disorders, in this malignancy using a model in which conditional knockout mice for NOD-like receptor family CARD domain-containing 5 (Nlrc5) are infected with Helicobacter felis. Gastric BAFF production was significantly increased in H.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 mRNA vaccination has reduced effectiveness in certain immunocompromised individuals. However, the cellular mechanisms underlying these defects, as well as the contribution of disease-induced cellular abnormalities, remain largely unexplored. In this study, we conducted a comprehensive serological and cellular analysis of patients with autoimmune systemic lupus erythematosus (SLE) who received the Wuhan-Hu-1 monovalent mRNA coronavirus disease 2019 vaccine.

View Article and Find Full Text PDF

Introduction: Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Anti-B-cell-activating factor (BAFF) therapy effectively depletes B cells and reduces SLE disease activity. This research aimed to evaluate the effect of BAFF blockade on B cell receptor (BCR) repertoire and gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!