Na+/K+ -ATPase stabilization by Hsp70 in the outer stripe of the outer medulla in rats during recovery from a low-protein diet.

Cell Stress Chaperones

IMBECU-CONICET Consejo Nacional de Investigaciones Científicas y Tecnológicas, Mendoza, Argentina.

Published: October 2009

A low-protein (LP) diet induces injury from energy depletion in renal epithelial cells. Overexpression of heat-shock proteins has been implicated in the restoration of the cytoskeletal anchorage of Na(+)/K(+)-ATPase. We tested if Hsp70 stabilizes renal Na(+)/K(+)-ATPase attachment to the cytoskeleton from the cortex and the outer stripe of the outer medulla (OSOM) in rats during recovery from a LP diet. Rats were fed with a LP diet (8% protein) for 14 days, and then the rats were recovered with a 24% protein (RP) diet. The control group received a 24% protein (NP) diet. Increased Na(+)/K(+)-ATPase dissociation was demonstrated in soluble fraction from OSOM with lower ATP content as a result of LP diet vs NP. Meanwhile, decreased Hsp70 levels in the same fraction were shown. Translocation of Hsp70 to the cytoskeletal injured fraction associated with stabilization of Na(+)/K(+)-ATPase was shown in OSOM from LP after in vitro co-incubation of the cytoskeletal fraction of LP and non-cytoskeletal fraction of RP. These effects were abolished by the addition of the anti-Hsp70 antibody. Absence of Na(+)/K(+)-ATPase detachment from its cytoskeletal anchorage was demonstrated in proximal duct segments from cortex in LP. Co-immunoprecipitation showed that the amount of Na(+)/K(+)-ATPase co-precipitating with Hsp70 increased in the OSOM as a result of the LP diet. In the cortex tissues from rats fed the LP and the RP diet, the interaction of both proteins were similar to the control groups. Our results indicate that Hsp70 has a critical role in protecting the integrity of the cytoskeletal anchorage of Na(+)/K(+)-ATPase during recovery from ATP-depleted injury resulting from LP in OSOM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673883PMC
http://dx.doi.org/10.1007/s12192-008-0021-9DOI Listing

Publication Analysis

Top Keywords

cytoskeletal anchorage
12
diet
9
outer stripe
8
stripe outer
8
outer medulla
8
rats recovery
8
low-protein diet
8
anchorage na+/k+-atpase
8
rats fed
8
fed diet
8

Similar Publications

Article Synopsis
  • Most cells in multicellular organisms need to attach to their environment, using structures called cell-matrix or cell-cell adhesions for stability.
  • Integrins are key transmembrane receptors that help form these adhesion complexes by connecting with extracellular matrix components and linking to the cell's cytoskeleton, allowing for signaling.
  • Recent research reveals that different types of integrin complexes, once thought to be separate, are actually interconnected and can influence each other's formation and transformation, particularly focusing on the versatile αvß5 integrins.
View Article and Find Full Text PDF

The majority of malignant tumors exhibit an altered metabolic phenotype that ultimately provides the required energy and molecular precursors necessary for unregulated cell division. Within this, phosphoserine aminotransferase 1 (PSAT1) is involved in serine biosynthesis and its activity promotes various biochemical processes, including one-carbon metabolism. It also directly generates α-ketoglutarate (α-KG), a Kreb cycle intermediate and epigenetic-regulating metabolite.

View Article and Find Full Text PDF

Role of Kindlin 2 in prostate cancer.

Sci Rep

August 2024

Department of Cardiovascular Biology and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44139, USA.

Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers.

View Article and Find Full Text PDF

Spatial arrangement, polarity, and posttranslational modifications of the microtubule system in the Drosophila eye.

Cell Tissue Res

November 2024

Unit of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

We have analyzed the organization of the microtubule system in photoreceptor cells and pigment cells within the adult Drosophila compound eye. Immunofluorescence localization of tubulin and of Short stop, a spectraplakin that has been reported to be involved in the anchorage of microtubule minus ends at the membrane, suggests the presence of non-centrosomal microtubule-organizing centers at the distal tip of the visual cells. Ultrastructural analyses confirm that microtubules emanate from membrane-associated plaques at the site of contact with cone cells and that all microtubules are aligned in distal-proximal direction within the photoreceptor cells.

View Article and Find Full Text PDF

The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!