Evolution of new enzymatic activities is believed to require a period of gene sharing in which a single enzyme must serve both its original function and a new function that has become advantageous to the organism. Subsequent gene duplication allows one copy to maintain the original function, while the other diverges to optimize the new function. The physiological impact of gene sharing and the constraints imposed by the need to maintain the original activity during the early stages of evolution of a new activity have not been addressed experimentally. We report here an investigation of the evolution of a new activity under circumstances in which both the original and the new activity are critical for growth. Glutamylphosphate reductase (ProA) has a very low promiscuous activity with N-acetylglutamylphosphate, the normal substrate for ArgC (N-acetylglutamylphosphate reductase). A mutation that changes Glu-383 to Ala increases the promiscuous activity by 12-fold but decreases the original activity by 2,800-fold. The impairment in Pro and Arg synthesis results in 14-fold overexpression of E383A ProA, providing sufficient N-acetylglutamylphosphate reductase activity to allow a strain lacking ArgC to grow on glucose. Thus, reaching the threshold level of NAGP reductase activity required for survival required both a structural mutation and overexpression of the enzyme. Notably, overexpression does not require a mutation in the regulatory region of the protein; amino acid limitation attributable to the poor catalytic abilities of E383A ProA causes a physiological response that results in overexpression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533218 | PMC |
http://dx.doi.org/10.1073/pnas.0804804105 | DOI Listing |
Transl Oncol
January 2025
Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA. Electronic address:
Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.
View Article and Find Full Text PDFCancer Res
January 2025
Karolinska Institutet, Stockholm, Stockholm, Sweden.
Transgenic mice and organoid models, such as three-dimensional tumoroid cultures, have emerged as powerful tools for investigating cancer development and targeted therapies. Yet, the extent to which these preclinical models recapitulate the cellular identity of heterogeneous malignancies, like neuroblastoma (NB), remains to be validated. Here, we characterized the transcriptional landscape of TH-MYCN tumors by single-cell RNA sequencing (scRNA-seq) and developed ex vivo tumoroids.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
University of Florida, Microbiology and Cell Science, Gainesville, Florida, United States;
Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops like rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as , the causative agent of rice blast disease, , responsible for head blight (FHB) in wheat, and , the source of Septoria tritici blotch (STB).
View Article and Find Full Text PDFmSystems
January 2025
Institute of Animal Science, University of Hohenheim, Stuttgart, Germany.
The continuous interaction between phages and their respective hosts has resulted in the evolution of multiple bacterial immune mechanisms. However, the diversity and prevalence of antiviral defense systems in complex communities are still unknown. We therefore investigated the diversity and abundance of viral defense systems in 3,038 high-quality bacterial and archaeal genomes from the rumen.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Introduction: Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients.
Materials And Methods: GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!