A neuropeptide, calcitonin gene-related peptide (CGRP), is widely distributed in neuronal systems and exhibits numerous biological activities. Using CGRP-knockout mice (CGRP(-/-)), we examined whether or not endogenous CGRP facilitates angiogenesis indispensable to tumor growth. CGRP increased tube formation by endothelial cells in vitro and enhanced sponge-induced angiogenesis in vivo. Tumor growth and tumor-associated angiogenesis in CGRP(-/-) implanted with Lewis lung carcinoma (LLC) cells were significantly reduced compared with those in wild-type (WT) mice. A CGRP antagonist, CGRP8-37 or denervation of sciatic nerves (L(1-5)) suppressed LLC growth in the sites of denervation compared with vehicle infusion or sham operation. CGRP precursor mRNA levels in the dorsal root ganglion in LLC-bearing WT were increased compared with those in non-LLC-bearing mice. This increase was abolished by denervation. The expression of VEGF in tumor stroma was down-regulated in CGRP(-/-). These results indicate that endogenous CGRP facilitates tumor-associated angiogenesis and tumor growth and suggest that relevant CGRP may be derived from neuronal systems including primary sensory neurons and may become a therapeutic target for cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527353 | PMC |
http://dx.doi.org/10.1073/pnas.0800767105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!