Ex-vivo tissue engineering is an emerging medical technology. Its aim is to regenerate tissues and organs and to restore them to full physiological activity. Some clinical trials with human tissue engineered products (HTEPs) have been conducted and others will follow. These trials not only have to confirm the therapeutic value of the HTEP, they also have to provide insight in its regenerative activity, its safety and long-term effects. The development of these trials is aggravated by the complexity of the tissue engineering process and product. This paper investigates how this complexity influences the ethical conduct of clinical trials with HTEPs. We focus on the value and validity of the trial, the risk-benefit ratio and the protection of the trial participant. We argue that trials with HTEPs need a robust methodology. The risk-benefit ratio of a new HTEP must be determined and compared with available efficacious therapies. This requires the identification and minimisation of risks associated with tissue engineering. Finally a process as complex as tissue engineering presents serious challenges for the informed consent process, and for the protection of the trial participant during and after the trial.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jme.2007.022913DOI Listing

Publication Analysis

Top Keywords

tissue engineering
16
clinical trials
12
trials human
8
human tissue
8
tissue engineered
8
engineered products
8
trials hteps
8
risk-benefit ratio
8
protection trial
8
trial participant
8

Similar Publications

Age is associated with increased tissue stiffness and a higher risk of low back pain, particularly in older, sedentary workers who spend long periods sitting. This study explored how trunk stiffness changes with age and its relationship with posture during prolonged sitting in a sample of 37 women aged 20-65 years. Age was assessed as both Chronological Age and Fitness Age, with trunk stiffness measured using a passive trunk flexion apparatus.

View Article and Find Full Text PDF

Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133?

J Nanobiotechnology

January 2025

Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.

Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy.

View Article and Find Full Text PDF

Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation.

Commun Biol

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.

Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.

View Article and Find Full Text PDF

Bone Tissue Engineering: From Biomaterials to Clinical Trials.

Adv Exp Med Biol

January 2025

Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.

Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.

View Article and Find Full Text PDF

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!