Nitric oxide (NO(*)), an important signaling molecule and a component of inflammatory response, is involved in tumorigenesis. However, the quantity of NO(*) and the cellular microenvironment influences the role of NO(*) in tumor development. We used a genetic strategy to test the hypothesis that an inflammatory microenvironment with an enhanced level of NO(*) accelerates spontaneous tumor development. C. parvum-induced inflammation and increased NO(*) synthase-2 (NOS2) expression coincided with accelerated spontaneous tumor development, mostly lymphomas, in p53-/-NOS2+/+ C57BL6 mice when compared with the controls (P = 0.001). However, p53-/-NOS2-/- mice did not show any difference in tumor latency between C. parvum-treated and control groups. In C. parvum-treated p53-/-NOS2+/+ mice, tumor development was preceded by a higher expression of NOS2 and phosphorylated Akt-Ser(473) (pAkt-Ser473) in spleen, increased cell proliferation measured by Ki-67 IHC in spleen and thymus, and a lower apoptotic index and CD95-L expression in spleen and thymus. C. parvum-treated p53-/-NOS2+/+ mice showed an increase in the number of Foxp3(+) T-reg cells, dendritic cells (DC), as well as increased CD80(+), CD86(+), CD40(+), and CD83(+) on DC in the spleen. Regulatory T-cells (T-reg) and the maturation of DC may modulate tumorigenesis. An increase in the FoxP3(+)T-reg cells in C. parvum-treated p53-/-NOS2+/+ mice indicates a role of NO(*) in the regulation of T-reg cells that may contribute to a protumor shift of the immune environment favoring an accelerated tumor development. These data provide genetic and mechanistic evidence that an inflammatory microenvironment and an increased level of NO(*) can accelerate tumor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576291PMC
http://dx.doi.org/10.1158/0008-5472.CAN-08-0410DOI Listing

Publication Analysis

Top Keywords

tumor development
24
parvum-treated p53-/-nos2+/+
12
p53-/-nos2+/+ mice
12
nitric oxide
8
role no*
8
inflammatory microenvironment
8
level no*
8
spontaneous tumor
8
spleen thymus
8
t-reg cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!