Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability.

J Biol Chem

Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57, Huddinge, Sweden.

Published: November 2008

Traditionally, quantification of protein-ligand affinity is performed using kinetic or equilibrium measurements. However, if the binding reaction proceeds via a stable covalent complex, these approaches are often limited. By exploiting the fact that the conformational stabilization of a protein is altered upon ligand binding due to specific interactions, and using an array of selectively chosen ligand analogs, one can quantify the contribution individual interactions have on specificity. We have used ligand-induced stability as a basis to dissect the interaction between glutaredoxin-3 (Grx3) and one of its native substrates, the tripeptide glutathione. Taking advantage of the fact that Grx3 can be trapped in a covalent mixed disulfide to glutathione or to selected synthetic glutathione analogs as part of the natural catalytic cycle, individual contributions to binding of specific molecular groups can be quantified by changes in ligand-induced stability. These changes in conformational stability are interpreted in terms of interaction energies (i.e. specificity) of the particular groups present on the ligand analog. Our results illustrate that although Grx3 recognizes glutathione predominantly through independent and additive ionic interactions at the N- and C-terminal of glutathione, van der Waals interactions from the unique gamma-glutamate moiety of glutathione also play an important role. This study places us closer to understanding the complex task of accommodating multiple substrate specificities in proteins of the thioredoxin superfamily and underscores the general applicability of ligand-induced stability to probe substrate specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M804019200DOI Listing

Publication Analysis

Top Keywords

ligand-induced stability
16
substrate specificity
8
specificity ligand-induced
8
binding specific
8
glutathione
6
stability
5
quantifying escherichia
4
escherichia coli
4
coli glutaredoxin-3
4
glutaredoxin-3 substrate
4

Similar Publications

Single-atom heterogeneous catalysts (SACs) are potential, recoverable alternatives to soluble organometallic complexes for cross-coupling reactions in fine-chemical synthesis. When developing SACs for these applications, it is often expected that the need for ligands, which are essential for organometallic catalysts, can be bypassed. Contrary to that, ligands remain almost always required for palladium atoms stabilized on commonly used functionalized carbon and carbon nitride supports, as the catalysts otherwise show limited activity.

View Article and Find Full Text PDF

A peptide-centric local stability assay enables proteome-scale identification of the protein targets and binding regions of diverse ligands.

Nat Methods

December 2024

State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China.

By using a limited-proteolysis strategy that employs a large amount of trypsin to generate peptides directly from native proteins, we found that ligand-induced protein local stability shifts can be sensitively detected on a proteome-wide scale. This enabled us to develop the peptide-centric local stability assay, a modification-free approach that achieves unprecedented sensitivity in proteome-wide target identification and binding-region determination. We demonstrate the broad applications of the peptide-centric local stability assay by investigating interactions across various biological contexts.

View Article and Find Full Text PDF

G Protein Coupled Receptors (GPCRs) constitute the largest family of signalling proteins responsible for translating extracellular stimuli into intracellular functions. They play crucial roles in numerous physiological processes and are major targets for drug discovery. Dysregulation of GPCRs is implicated in various diseases, making understanding their structural dynamics critical for therapeutic development.

View Article and Find Full Text PDF

Riboswitch Mechanisms for Regulation of P1 Helix Stability.

Int J Mol Sci

October 2024

Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA.

Riboswitches are highly structured RNA regulators of gene expression. Although found in all three domains of life, they are particularly abundant and widespread in bacteria, including many human pathogens, thus making them an attractive target for antimicrobial development. Moreover, the functional versatility of riboswitches to recognize a myriad of ligands, including ions, amino acids, and diverse small-molecule metabolites, has enabled the generation of synthetic aptamers that have been used as molecular probes, sensors, and regulatory RNA devices.

View Article and Find Full Text PDF

Three new molecular cobaloxime complexes with the general formula [ClCo(dpgH)L] (1-3), where L1 = -(4-pyridylmethyl)-1,8-naphthalimide, L2 = 4-bromo--(4-pyridylmethyl)-1,8-naphthalimide, L3 = 4-piperidin--(4-pyridylmethyl)-1,8-naphthalimide, have been synthesized and characterized by UV-Vis, multinuclear NMR, FT-IR and PXRD spectroscopic techniques. The crystal structures of all complexes have also been reported. The electrocatalytic activity of complexes is investigated under two catalysis conditions: (i) homogeneous conditions in acetonitrile using acetic acid (AcOH) as a proton source and (ii) heterogeneous conditions upon immobilization onto the surface of activated carbon cloth (CC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!