Epileptiform activities in slices of hippocampus from mice after intra-hippocampal injection of kainic acid.

J Physiol

INSERM U739, CHU Pitié-Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France.

Published: October 2008

Intra-hippocampal kainate injection induces the emergence of recurrent seizures after a delay of 3-4 weeks. We examined the cellular and synaptic basis of this activity in vitro using extracellular and intracellular records from longitudinal hippocampal slices. These slices permitted recordings from the dentate gyrus, the CA3 and CA1 regions and the subiculum of both the injected and the contralateral non-injected hippocampus. A sclerotic zone was evident in dorsal regions of slices from the injected hippocampus, while ventral regions and tissue from the contralateral hippocampus were not sclerotic. Interictal field potentials of duration 50-200 ms were generated spontaneously in both ipsilateral and contralateral hippocampal slices, but not in the sclerotic region, at 3-12 months after injection. They were initiated in the CA1 and CA3 regions and the subiculum. They were blocked by antagonists at glutamatergic receptors and were transformed into prolonged epileptiform events by GABAergic receptor antagonists. The membrane potential and the reversal potential of GABAergic synaptic events were more depolarized in CA1 pyramidal cells from kainate-treated animals than in control animals. Ictal-like events of duration 8-80 s were induced by tetanic stimulation (50 Hz, 0.2-1 s) preferentially in dorsal contralateral and ventral ipsilateral slices. Similar events were initiated by focal application of a combination of high K(+) and GABA. These data show that both interictal and ictal-like activities can be induced in slices of both ipsilateral and contralateral hippocampus from kainate-treated animals and suggest that changes in cellular excitability and inhibitory synaptic signalling may contribute to their generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614071PMC
http://dx.doi.org/10.1113/jphysiol.2008.156281DOI Listing

Publication Analysis

Top Keywords

hippocampal slices
8
regions subiculum
8
hippocampus sclerotic
8
contralateral hippocampus
8
ipsilateral contralateral
8
kainate-treated animals
8
slices
7
hippocampus
5
contralateral
5
epileptiform activities
4

Similar Publications

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.

View Article and Find Full Text PDF

Background: Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system.

View Article and Find Full Text PDF

Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.

View Article and Find Full Text PDF

Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons.

Inflamm Res

January 2025

Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Background: Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal.

View Article and Find Full Text PDF

Curcumin Improves Hippocampal Cell Bioenergetics, Redox and Inflammatory Markers, and Synaptic Proteins, Regulating Mitochondrial Calcium Homeostasis.

Neurotox Res

January 2025

Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile.

Mitochondria produces energy through oxidative phosphorylation (OXPHOS), maintaining calcium homeostasis, survival/death cell signaling mechanisms, and redox balance. These mitochondrial functions are especially critical for neurons. The hippocampus is crucial for memory formation in the brain, which is a process with high mitochondrial function demand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!