Retroviral capsid protein (CA) mediates protein interactions driving the assembly of both immature viral particles and the core of the mature virions. Structurally conserved N-terminal domains of several retroviruses refold after proteolytic cleavage into a beta-hairpin, stabilized by a salt bridge between conserved N-terminal Pro and Asp residues. Based on comparison with other retroviral CA, we identified Asp50 and Asp57 as putative interacting partners for Pro1 in Mason-Pfizer monkey virus (M-PMV) CA. To investigate the importance of CA Pro1 and its interacting Asp in M-PMV core assembly and infectivity, P1A, P1Y, D50A, T54A and D57A mutations were introduced into M-PMV. The P1A and D57A mutations partially blocked Gag processing and the released viral particles exhibited aberrant cores and were non-infectious. These data indicate that the region spanning residues Asp50-Asp57 plays an important role in stabilization of the beta-hairpin and that Asp57 likely forms a salt-bridge with P1 in M-PMV CA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779695PMC
http://dx.doi.org/10.1016/j.virol.2008.07.021DOI Listing

Publication Analysis

Top Keywords

mason-pfizer monkey
8
monkey virus
8
capsid protein
8
core assembly
8
assembly infectivity
8
viral particles
8
conserved n-terminal
8
d57a mutations
8
point mutations
4
mutations n-terminal
4

Similar Publications

Lymphoproliferative disorders of natural killer (NK)-cell lineage are well documented in humans but have yet to be documented in non-human primates (NHPs). Here we describe a case of NK-cell lymphoproliferative disorder/leukemia in a 20-y-old captive female rhesus macaque (). The animal clinically had mild splenomegaly and marked lymphocytosis with small-to-medium lymphocytes in blood smears.

View Article and Find Full Text PDF

We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity.

View Article and Find Full Text PDF

For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM.

View Article and Find Full Text PDF

Most viruses encode their own proteases to carry out viral maturation and these often require dimerization for activity. Studies on human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2) and human T-cell leukemia virus (HTLV-1) proteases have shown that the activity of these proteases can be reversibly regulated by cysteine (Cys) glutathionylation and/or methionine oxidation (for HIV-2). These modifications lead to inhibition of protease dimerization and therefore loss of activity.

View Article and Find Full Text PDF

Retroviral RNA Processing.

Viruses

May 2022

Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA.

This review is an accompaniment to a Special Issue on "Retroviral RNA Processing". It discusses post-transcriptional regulation of retroviruses, ranging from the ancient foamy viruses to more modern viruses, such as HIV-1, HTLV-1, Rous sarcoma virus, murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus. This review is not comprehensive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!