Prenatal alcohol exposure can affect brain development, leading to behavioral problems, including overactivity, motor dysfunction and learning deficits. Despite warnings about the effects of drinking during pregnancy, rates of fetal alcohol syndrome remain unchanged and thus, there is an urgent need to identify interventions that reduce the severity of alcohol's teratogenic effects. Insulin-like growth factor-I (IGF-I) is neuroprotective against ethanol-related toxicity and promotes white matter production following a number of insults. Given that prenatal alcohol leads to cell death and white matter deficits, the present study examined whether IGF-I could reduce the severity of behavioral deficits associated with developmental alcohol exposure. Sprague-Dawley rat pups received ethanol intubations (5.25 g/kg/day) or sham intubations on postnatal days (PD) 4-9, a period of brain development equivalent to the third trimester. On PD 10-13, subjects from each treatment received 0 or 10 microg IGF-I intranasally each day. Subjects were then tested on a series of behavioral tasks including open field activity (PD 18-21), parallel bar motor coordination (PD 30-32) and Morris maze spatial learning (PD 45-52). Ethanol exposure produced overactivity, motor coordination impairments, and spatial learning deficits. IGF-I treatment significantly mitigated ethanol's effects on motor coordination, but not on the other two behavioral tasks. These data indicate that IGF-I may be a potential treatment for some of ethanol's damaging effects, a finding that has important implications for children of women who drink alcohol during pregnancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164874PMC
http://dx.doi.org/10.1016/j.ntt.2008.08.001DOI Listing

Publication Analysis

Top Keywords

motor coordination
16
alcohol exposure
12
insulin-like growth
8
growth factor-i
8
deficits associated
8
prenatal alcohol
8
brain development
8
overactivity motor
8
learning deficits
8
reduce severity
8

Similar Publications

Anecdotally, horses' gaits sound rhythmic. Are they really? In this study, we quantified the motor rhythmicity of horses across three different gaits (walk, trot, and canter). For the first time, we adopted quantitative tools from bioacoustics and music cognition to quantify locomotor rhythmicity.

View Article and Find Full Text PDF

A majority of people with schizophrenia will experience motor symptoms such as impairments to coordination, balance and motor sequencing. These neurological soft signs are associated with negative social and functional outcomes, and poor disease prognosis. They occur prior to medication exposure, suggesting they are an intrinsic feature of schizophrenia.

View Article and Find Full Text PDF

Despite the advances in bionic reconstruction of missing limbs, the control of robotic limbs is still limited and, in most cases, not felt to be as natural by users. In this study, we introduce a control approach that combines robotic design based on postural synergies and neural decoding of synergistic behavior of spinal motoneurons. We developed a soft prosthetic hand with two degrees of actuation that realizes postures in a two-dimensional linear manifold generated by two postural synergies.

View Article and Find Full Text PDF

For trained individuals such as athletes and musicians, learning often plateaus after extensive training, known as the "ceiling effect." One bottleneck to overcome it is having no prior physical experience with the skill to be learned. Here, we challenge this issue by exposing expert pianists to fast and complex finger movements that cannot be performed voluntarily, using a hand exoskeleton robot that can move individual fingers quickly and independently.

View Article and Find Full Text PDF

Background: Neurological disorders pose a substantial burden worldwide in healthcare and health research. eHealth has emerged as a promising field given its potential to aid research, with lower resources. With a changing eHealth landscape, identifying available tools is instrumental for informing future research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!