A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of ascorbic acid, phytic acid and tannic acid on iron bioavailability from reconstituted ferritin measured by an in vitro digestion-Caco-2 cell model. | LitMetric

The effects of ascorbic acid (AA), phytate and tannic acid (TA) on Fe bioavailability from Fe supplied as reconstituted ferritin were compared with FeSO4 using an in vitro digestion-Caco-2 cell model. Horse spleen apoferritin was chemically reconstituted into an animal-type ferritin (HSF) and a plant-type ferritin (P-HSF) according to the typical ratios of Fe:P found in these molecules. In the presence of AA (Fe:AA molar ratio of 1:20), significantly more Fe was absorbed from FeSO4 (about 303 %), HSF (about 454 %) and P-HSF (about 371 %) when compared with ferrous sulfate or ferritin without AA. Phytic acid (PA; Fe:PA molar ratio of 1:20) significantly reduced Fe bioavailability from FeSO4 (about 86 %), HSF (about 82 %) and P-HSF (about 93 %) relative to FeSO4 and the ferritin controls. Treatment with TA (Fe:TA molar ratio of 1:1) significantly decreased Fe bioavailability (about 97 %) from both FeSO4 and the ferritin samples. AA was able to partially reverse the negative effect of PA (Fe:PA:AA molar ratio of 1:20:20) on Fe bioavailability but did not reverse the inhibiting effect of TA (Fe:TA:AA molar ratio of 1:1:20) on Fe bioavailability from ferritin and FeSO4. Overall, there were no significant differences in bioavailable Fe between P-HSF, HSF or FeSO4. Furthermore, the addition of AA (a known promoter) or the inhibitors, PA and TA, or both, did not result in significant differences in bioavailable Fe from ferritin relative to FeSO4. The results suggest that Fe in the reconstituted ferritin molecule is easily released during in vitro digestion and interacts with known promoters and inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114508055621DOI Listing

Publication Analysis

Top Keywords

molar ratio
20
reconstituted ferritin
12
ferritin
10
effects ascorbic
8
ascorbic acid
8
phytic acid
8
tannic acid
8
vitro digestion-caco-2
8
digestion-caco-2 cell
8
cell model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!