A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoparticles for gene transfer to human embryonic stem cell colonies. | LitMetric

Nanoparticles for gene transfer to human embryonic stem cell colonies.

Nano Lett

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

Published: October 2008

We develop biodegradable polymeric nanoparticles to facilitate nonviral gene transfer to human embryonic stem cells (hESCs). Small (approximately 200 nm), positively charged (approximately 10 mV) particles are formed by the self assembly of cationic, hydrolytically degradable poly(beta-amino esters) and plasmid DNA. By varying the end group of the polymer, we can tune the biophysical properties of the resulting nanoparticles and their gene-delivery efficacy. We created an OCT4-driven GFP hES cell line to allow the rapid identification of nanoparticles that facilitate gene transfer while maintaining an hESC undifferentiated state. Using this cell system, we synthesized nanoparticles that have gene delivery efficacy that is up to 4 times higher than that of the leading commercially available transfection agent, Lipofectamine 2000. Importantly, these materials have minimal toxicity and do not adversely affect hESC colony morphology or cause nonspecific differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814161PMC
http://dx.doi.org/10.1021/nl8012665DOI Listing

Publication Analysis

Top Keywords

gene transfer
12
nanoparticles gene
8
transfer human
8
human embryonic
8
embryonic stem
8
nanoparticles facilitate
8
nanoparticles
5
stem cell
4
cell colonies
4
colonies develop
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!