Influence of plasticizer type on the properties of polymer electrolytes based on chitosan.

J Phys Chem A

IQSC-USP, Av. Trabalhador Sao carlense 400, 13560-970 Sao Carlos-SP, Brazil.

Published: September 2008

Polymer electrolytes were obtained by the casting technique from a solution containing chitosan, hydrochloric acid, and plasticizer such as glycerol, ethylene glycol, and sorbitol. The transparent membranes with good ionic conductivity properties were characterized by impedance and UV-vis spectroscopies, thermal analysis (DSC), and X-ray diffraction. The best ionic conductivity values of 9.5 x 10(-4) S cm(-1) at room temperature and 2.5 x 10(-3) S cm(-1) at 80 degrees C were obtained for the sample containing 59 wt% of glycerol and an equimolar amount of HCl with respect to NH2 groups in chitosan. The temperature dependence of the ionic conductivity exhibits an Arrhenius behavior with activation energy of 16.6 kJ mol(-1). The thermal analysis indicates that both glass transition temperature (-87 degrees C) and crystallinity are low for this electrolyte. The samples with 13 wt% of LiCF3SO3 showed that the ionic conductivity values of 2.2 x 10(-5) S cm(-1) at room temperature and 4 x 10(-4) S cm(-1) at 80 degrees C are predominantly amorphous and showed a low glass transition temperature of about -73 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp801573hDOI Listing

Publication Analysis

Top Keywords

ionic conductivity
16
polymer electrolytes
8
thermal analysis
8
conductivity values
8
10-4 cm-1
8
cm-1 room
8
room temperature
8
cm-1 degrees
8
glass transition
8
transition temperature
8

Similar Publications

All-solid-state lithium-ion batteries (ASSLBs) are the next advancement in battery technology which is expected to power the next generation of electronics, particularly electric vehicles due to their high energy density and superior safety. ASSLBs require solid electrolytes with high ionic conductivity to serve as a Li-ion battery, driving extensive research efforts to enhance the ionic conductivity of the existing solid electrolytes. Keeping this in view, the B-site of LiLaTiO (LLTO) solid electrolyte has been partially substituted with Ga and novel Ga-doped LLTO (Li LaTi Ga O) solid-electrolytes are fabricated using the solid-state reaction method, followed by sintering at 1100 °C for 2 h.

View Article and Find Full Text PDF

Organic molecular design for high-power density sodium-ion batteries.

Chem Commun (Camb)

January 2025

Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany.

Organic materials, with abundant resources, low cost, high flexibility, tunable structures, lightweight nature, and wide operating temperature range, are regarded as promising candidates for sodium-ion batteries (SIBs). Unfortunately, their poor electronic and ionic conductivity remain significant challenges, hindering the achievement of high power density for sodium storage. Power density, a critical factor in battery performance evaluation, is essential for assessing fast charging capabilities.

View Article and Find Full Text PDF

Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing.

Mater Horiz

January 2025

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.

Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%).

View Article and Find Full Text PDF

Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv.

View Article and Find Full Text PDF

Magnesium chloride-infused chitosan-poly (vinyl alcohol) electrolyte films: A versatile solution for energy storage devices.

Int J Biol Macromol

January 2025

Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.

The potential of advanced energy storage devices lies in using solid biodegradable polymer electrolytes. This study is focused on a solid blend polymer electrolyte (SBPE) film based on chitosan (CS)-poly (vinyl alcohol) (PVA) blend matrix doped with magnesium chloride (MgCl) salt via solution casting. The interaction of MgCl was verified via X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!