We have designed new nanoprobes applicable for both positron emission tomography (PET) and optical fluorescence in vivo imaging. Fluorine-18, which is commonly used for clinical imaging, has been coupled to phospholipid quantum dot (QD) micelles. This probe was injected in mice and we demonstrated that its dynamic quantitative whole body biodistribution and pharmacokinetics could be monitored using PET as well as the kinetics of their cellular uptake using in vivo fibered confocal fluorescence imaging. Phospholipid micelle encapsulation of QDs provides a highly versatile surface chemistry to conjugate multiple chemicals and biomolecules with controlled QD:molecule valency. Here, we show that, in contrast with several previous studies using other QD polymer coatings, these phospholipid QD micelles exhibit long circulation half-time in the bloodstream (on the order of 2 h) and slow uptake by reticulo-endothelial system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc800179jDOI Listing

Publication Analysis

Top Keywords

phospholipid quantum
8
quantum dot
8
dot micelles
8
fluorine-18-labeled phospholipid
4
micelles vivo
4
vivo multimodal
4
imaging
4
multimodal imaging
4
imaging body
4
body cellular
4

Similar Publications

Menstrual pain affects women's quality of life and productivity, yet objective molecular markers for its severity have not been established owing to the variability in blood levels and chemical properties of potential markers such as plasma steroid hormones, lipid mediators, and hydrophilic metabolites. To address this, we conducted a metabolomics study using five analytical methods to identify biomarkers that differentiate menstrual pain severity. This study included 20 women, divided into mild (N = 12) and severe (N = 8) pain groups based on their numerical pain rating scale.

View Article and Find Full Text PDF

Cholesterol mediates the potential adverse influence of graphene quantum dots on placental lipid membrane model.

Sci Rep

December 2024

College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.

View Article and Find Full Text PDF

The biological effects of electromagnetic field (EMF) irradiation in the terahertz (THz) range remain ambiguous, despite numerous studies that have been conducted. In this paper, the metabolic response of K 12 to EMF irradiation was examined using a 1.0 W m incident synchrotron source (SS) in the range of 0.

View Article and Find Full Text PDF

Background: Lipid droplets (LDs) are organelles consisting of a central core of neutral lipids covered by a single layer of phospholipids and are found in most eukaryotic cells. Accumulating evidence suggests that LDs not only store neutral lipids but also coordinate with other organelles for lipid metabolism within cells.

Methods: This review focuses on the synthesis of LDs during follicular development and highlights the factors involved in the regulation of LD biogenesis within the ovary.

View Article and Find Full Text PDF

Effect of Triterpenoids Betulin and Betulinic Acid on Pulmonary Surfactant Membranes.

J Membr Biol

February 2025

Faculty of Science, Department of Physics, Ege University, 35100, Bornova, Izmir, Turkey.

Article Synopsis
  • - The study investigates how triterpenoids betulin (BE) and betulinic acid (BA) influence the behavior and packing of pulmonary surfactant membranes, particularly focusing on their effects on dipalmitoylphosphatidylcholine (DPPC) bilayers using various scientific methods.
  • - Findings indicate that BE has a more significant impact on DPPC than BA; BE at 20 mol% causes changes in phase transitions, while BA at lower concentrations decreases the main transition temperature and disrupts the pretransition entirely.
  • - Both triterpenoids enhance lateral mobility and dehydration in DPPC structures, leading to larger liposomes and changed molecular interactions, demonstrated by hydrogen bonding between the triterpenoids and
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!