AI Article Synopsis

  • The study used immunoblotting to identify a strong protein band of about 36 kDa in ciliates Blepharisma japonicum and Stentor coeruleus, suggesting the presence of protozoan rhodopsin.
  • Confocal microscopy confirmed the immunoblotting results by showing rhodopsin-like molecules in the cell membranes of both ciliates.
  • Two-dimensional gel electrophoresis revealed distinct protein spots in both species, indicating possible phosphorylated rhodopsin forms, which may play a role in sensory responses to light in these organisms.

Article Abstract

Immunoblotting of isolated cell membrane fractions from ciliates Blepharisma japonicum and Stentor coeruleus with a polyclonal antibody raised against rhodopsin revealed one strong protein band of about 36 kDa, thought to correspond to protozoan rhodopsin. Inspection of both ciliates labeled with the same antibody using a confocal microscope confirmed the immunoblotting result and demonstrated the presence of these rhodopsin-like molecules localized within the cell membrane area. Immunoblot analysis of the ciliate membrane fractions resolved by two-dimensional gel electrophoresis identified two distinct 36 kDa spots at pIs of 4.5 and 7.0 for Blepharisma, and three spots at pIs of 4.4, 5.0 and 6.0 for Stentor, indicating a possible mixture of phosphorylated rhodopsin species in these cells. The obtained results suggest that both Blepharisma and the related ciliate Stentor contain within the cell membrane the rhodopsin-like proteins, which may be involved as receptor molecules in the sensory transduction pathway mediating motile photoresponses in these protists as in other species of lower eukaryota.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b717280jDOI Listing

Publication Analysis

Top Keywords

cell membrane
12
blepharisma japonicum
8
japonicum stentor
8
stentor coeruleus
8
membrane fractions
8
spots pis
8
rhodopsin
4
rhodopsin immunoanalog
4
immunoanalog photosensitive
4
photosensitive protozoans
4

Similar Publications

The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

Prcis: The discriminant function of glaucoma, obtained by the Laguna ONhE colorimetric program, significantly correlates with the BMO-MRW. Furthermore, the diagnostic capacity was inferior to other structural tests in POAG patients.

Purpose: To evaluate the diagnostic capability for glaucoma and the correlation between peripapillary and macular parameters using spectral domain optical coherence tomography (SD-OCT) and optic nerve head hemoglobin (OHN Hb) levels assessed by the Laguna ONhE® software using colorimetric analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!