Challenges in developing novel treatments for childhood disorders: lessons from research on anxiety.

Neuropsychopharmacology

Mood and Anxiety Disorders Program, Intramural Research Program, The National Institute of Mental Health, Bethesda, MD 20892-2670, USA.

Published: January 2009

Alterations in brain development may contribute to chronic mental disorders. Novel treatments targeted toward the early-childhood manifestations of such chronic disorders may provide unique therapeutic opportunities. However, attempts to develop and deliver novel treatments face many challenges. Work on pediatric anxiety disorders illustrates both the inherent challenges as well as the unusual opportunities for therapeutic advances. The present review summarizes three aspects of translational research on pediatric anxiety disorders as the work informs efforts to develop novel interventions. First, the review summarizes data on developmental conceptualizations of anxiety from both basic neuroscience and clinical perspectives. This summary is integrated with a discussion of the two best-established treatments, cognitive behavioral therapy and selective serotonin reuptake inhibitors. Second, the review summarizes work on attention bias to threat, considering implications for both novel treatments and translational research on neural circuitry functional development. This illustrates the manner in which clinical findings inform basic systems neuroscience research. Finally, the review summarizes work in basic science on fear learning, as studied in fear conditioning, consolidation, and extinction paradigms. This summary ends by describing potential novel treatments, illustrating the manner in which basic neuroscience informs therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794358PMC
http://dx.doi.org/10.1038/npp.2008.113DOI Listing

Publication Analysis

Top Keywords

novel treatments
20
review summarizes
16
pediatric anxiety
8
anxiety disorders
8
basic neuroscience
8
summarizes work
8
novel
6
treatments
6
disorders
5
challenges developing
4

Similar Publications

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

Introduction: A novel antifungal formulation combining zinc oxide nanoparticles and Whitfield's spirit solution (ZnO-WFs) was developed to enhance the treatment of superficial fungal foot infections.

Methods: This 8-week, randomized, double-blinded controlled trial compared the efficacy, safety, and cost-effectiveness of ZnO-WFs with those of Whitfield's spirit solution (WFs) alone and a zinc oxide nanoparticle solution (ZnOs). Seventy of the 84 enrolled patients completed the trial.

View Article and Find Full Text PDF

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast Cancer Res Treat

January 2025

Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.

Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.

Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.

View Article and Find Full Text PDF

The application of the technique for dorsal median sulcus mapping in intramedullary space occupying surgery: a single-center experience.

Acta Neurochir (Wien)

January 2025

Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Purpose: To investigate the technique for dorsal median sulcus (DMS) mapping and assess its application value in preserving dorsal columnn (DC) function during intramedullary space occupying surgery based on a single-center experience.

Methods: A retrospective analysis was conducted on 41 cases of intramedullary spinal cord tumor admitted to the Department of Neurosurgery at the First Affiliated Hospital of Xiamen University from March 2017 to August 2023. All included cases underwent intraoperative electrophysiological monitoring, and were divided into a study group (n = 18) and a control group (n = 23), based on whether DMS mapping technique was utilized.

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!