Background: The gastrin-releasing peptide receptor (GRP-R) is expressed in several normal human tissues and is overexpressed in various human tumors including breast, prostate, small-cell lung cancer and pancreatic cancer. Recently, 99mTc-EDDA/HYNIC-[Lys]-bombesin (99mTc-HYNIC-BN) was reported as a radiopharmaceutical with high stability in human serum, specific cell GRP-R binding and rapid cell internalization.
Aim: The aim of this study was to determine the biokinetics and dosimetry of 99mTc-HYNIC-BN and the feasibility of using this radiopharmaceutical to image GRP-R in four early breast cancer patients and seven healthy women.
Methods: Whole-body images were acquired at 20, 90, 180 min, and 24 h after 99mTc-HYNIC-BN administration. The same regions of interest were drawn around source organs on each time frame and regions of interest were converted to activity (conjugate view counting method). The image sequence was used to extrapolate 99mTc-HYNIC-BN time-activity curves in each organ to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates.
Results: 99mTc-HYNIC-BN had a rapid blood clearance with mainly renal excretion. No statistically significant differences (P>0.05) in the radiation-absorbed doses among cancer patients and healthy women were observed. The average equivalent doses (n=11) were 24.8+/-8.8 mSv (kidneys), 7.3+/-1.8 mSv (lungs), 6.5+/-4.0 mSv (breast), 2.0+/-0.3 mSv (pancreas), 1.6+/-0.3 mSv (liver), 1.2+/-0.2 mSv (ovaries), and 1.0+/-0.2 mSv (red marrow). The effective dose was 3.3+/-0.6 mSv. The images showed well-differentiated concentration of 99mTc-HYNIC-BN in cancer mammary tissue.
Conclusion: All the absorbed doses were comparable with those known for most of the 99mTc studies. 99mTc-HYNIC-BN shows high tumor uptake in breasts with malignant tumors so it is a promising imaging radiopharmaceutical to target site-specific early breast cancer. The results obtained warrant a further clinical study to determine specificity/sensibility of 99mTc-HYNIC-BN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MNM.0b013e3282ffb45c | DOI Listing |
EJNMMI Radiopharm Chem
January 2025
Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden.
Background: Gastrin releasing peptide receptor (GRPR)-directed radiopharmaceuticals for targeted radionuclide therapy may be a very promising addition in prostate and breast cancer patient management. Aiming to provide a GRPR-targeting theranostic pair, we have utilized the Tc-99m/Re-188 radiometal pair, in combination with two bombesin based antagonists, maSSS-PEG2-RM26 and maSES-PEG2-RM26. The two main aims of the current study were (i) to elucidate the influence of the radiometal-exchange on the biodistribution profile of the two peptides and (ii) to evaluate the feasibility of using the [Tc]Tc labeled counterparts for the dosimetry estimation for the [Re]Re-labeled conjugates.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Department of Emergency, Wuhan No.6 Hospital(Affiliated Hospital of Jianghan University), No.168, Xianggang Road, Jiangan District, Wuhan, Hubei 430015, China. Electronic address:
Background And Objective: Prostate cancer (PCa) is the second most commonly diagnosed cancer in males, the mechanism of PCa with bone metastasis remains unclear. In this study, we aimed to utilize a retrospective clinical study to evaluate the diagnostic value of bone metastases from PCa and provide reference values for future applications.
Methods: We retrospectively collected a total of 200 samples including 100 PCa patients with bone metastatic and 100 without from June 2019 to August 2021.
EJNMMI Res
January 2025
Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
Background: Gliomas are the most common malignant primary tumors of the central nervous system. There is an urgent need for new convenient, targeted and specific imaging agents for gliomas. This study aimed to firstly evaluate the feasibility of Ga-NOTA-RM26 PET/CT imaging in glioma and analyze the relationship between the imaging characteristics and glioma grade, classification and molecular alterations.
View Article and Find Full Text PDFClin Nucl Med
January 2025
From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Purpose: The aim of this study was to investigate the value of 68Ga-NOTA-RM26 (68Ga-RM26), a gastrin-releasing peptide receptor-targeting antagonist labeled with the radionuclide 68Ga, in the diagnosis of high-grade gliomas and in combination with multiregional biopsies using PET/CT.
Patients And Methods: After institutional review board approval and informed consent, a total of 35 patients with suspected glioma lesions were enrolled in this study. All patients underwent 68Ga-RM26 PET/CT scans within 2 weeks before surgery.
Anticancer Drugs
January 2025
Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) effectively treat EGFR-mutant lung adenocarcinoma, demonstrating initial efficacy but eventually leading to acquired resistance. Small cell transformation is a rare resistance mechanism to EGFR-TKIs in lung adenocarcinoma, which can complicate clinical diagnosis and treatment. We present a patient with lung adenocarcinoma who underwent a prior pneumonectomy and adjuvant chemotherapy and was treated with osimertinib after the recurrence of lung cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!