Cytochrome c maturation (Ccm) is a post-translational and post-export protein modification process that involves ten (CcmABCDEFGHI and CcdA or DsbD) components in most Gram-negative bacteria. The absence of any of these components abolishes the ability of cells to form cytochrome c, leading in the case of Rhodobacter capsulatus to the loss of photosynthetic proficiency and respiratory cytochrome oxidase activity. Based on earlier molecular genetic studies, we inferred that R. capsulatus CcmF, CcmH, and CcmI interact with each other to perform heme-apocytochrome c ligation. Here, using functional epitope-tagged derivatives of these components coproduced in appropriate mutant strains, we determined protein-protein interactions between them in detergent-dispersed membranes. Reciprocal affinity purification as well as tandem size exclusion and affinity chromatography analyses provided the first biochemical evidence that CcmF, CcmH, and CcmI associate stably with each other, indicating that these Ccm components form a membrane-integral complex. Under the conditions used, the CcmFHI complex does not contain CcmG, suggesting that the latter thio-reduction component is not always associated with the heme ligation components. The findings are discussed with respect to defining the obligatory components of a minimalistic heme-apocytochrome c ligation complex in R. capsulatus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573057PMC
http://dx.doi.org/10.1074/jbc.M805413200DOI Listing

Publication Analysis

Top Keywords

ccmf ccmh
12
ccmh ccmi
12
cytochrome maturation
8
form membrane-integral
8
heme ligation
8
ligation complex
8
heme-apocytochrome ligation
8
components
7
cytochrome
4
maturation components
4

Similar Publications

In many Gram-negative bacteria, including cytochrome maturation (Ccm) is carried out by a membrane-integral machinery composed of nine proteins (CcmA to I). During this process, the periplasmic thiol-disulfide oxidoreductase DsbA is thought to catalyze the formation of a disulfide bond between the Cys residues at the apocytochrome heme-binding site (CCH). Subsequently, a Ccm-specific thioreductive pathway involving CcmG and CcmH reduces this disulfide bond to allow covalent heme ligation.

View Article and Find Full Text PDF

Cytochrome c maturation (ccm) in many bacteria, archaea and plant mitochondria requires eight membrane proteins, CcmABCDEFGH, called system I. This pathway delivers and attaches haem covalently to two cysteines (of Cys-Xxx-Xxx-Cys-His) in the cytochrome c. All models propose that CcmFH facilitates covalent attachment of haem to the apocytochrome; namely, that it is the synthetase.

View Article and Find Full Text PDF

Cytochrome c maturation (Ccm) is a post-translational process that occurs after translocation of apocytochromes c to the positive (p) side of energy-transducing membranes. Ccm is responsible for the formation of covalent bonds between the thiol groups of two cysteines residues at the heme-binding sites of the apocytochromes and the vinyl groups of heme b (protoporphyrin IX-Fe). Among the proteins (CcmABCDEFGHI and CcdA) required for this process, CcmABCD are involved in loading heme b to apoCcmE.

View Article and Find Full Text PDF

Cytochrome c maturation (Ccm) is a sophisticated post-translational process. It occurs after translocation of apocytochromes c to the p side of energy transducing membranes and forms stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of cysteines at their conserved heme binding sites. In many organisms this process involves up to 10 (CcmABCDEFGHI and CcdA) membrane proteins.

View Article and Find Full Text PDF

A pathway for cytochrome c maturation (Ccm) in bacteria, archaea and eukaryotes (mitochondria) requires the genes encoding eight membrane proteins (CcmABCDEFGH). The CcmABCDE proteins are proposed to traffic haem to the cytochrome c synthetase (CcmF/H) for covalent attachment to cytochrome c by unknown mechanisms. For the first time, we purify pathway complexes with trapped haem to elucidate the molecular mechanisms of haem binding, trafficking and redox control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!