Comparison of GC-MS and FTIR methods for quantifying naphthenic acids in water samples.

Chemosphere

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.

Published: November 2008

The extraction of bitumen from the oil sands in Canada releases toxic naphthenic acids into the process-affected waters. The development of an ideal analytical method for quantifying naphthenic acids (general formula C(n)H(2n+Z)O(2)) has been impeded by the complexity of these mixtures and the challenges of differentiating naphthenic acids from other naturally-occurring organic acids. The oil sands industry standard FTIR method was compared with a newly-developed GC-MS method. Naphthenic acids concentrations were measured in extracts of surface and ground waters from locations within the vicinity of and away from the oil sands deposits and in extracts of process-affected waters. In all but one case, FTIR measurements of naphthenic acids concentrations were greater than those determined by GC-MS. The detection limit of the GC-MS method was 0.01 mg L(-1) compared to 1 mg L(-1) for the FTIR method. The results indicated that the GC-MS method is more selective for naphthenic acids, and that the FTIR method overestimates their concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.07.024DOI Listing

Publication Analysis

Top Keywords

naphthenic acids
28
oil sands
12
ftir method
12
gc-ms method
12
quantifying naphthenic
8
acids
8
process-affected waters
8
acids concentrations
8
naphthenic
7
method
7

Similar Publications

On the occurrence, behaviour, and fate of naphthenic acid fraction compounds in aquatic environments.

Sci Total Environ

January 2025

Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, Saskatchewan S7N 5A9, Canada; University of Lethbridge, Office of the Vice President (Research), Lethbridge, Alberta, Canada. Electronic address:

Naphthenic acids and naphthenic acid fraction compounds (NAFCs) are associated with production of unconventional petroleum resources, especially the Athabasca Oil Sands of Alberta, Canada. This complex mixture of acidic organic compounds is toxic to a variety of taxa, and so represents an important environmental management challenge. Thus, there is clear motivation to better understand the occurrence and characteristics of NAFCs in aquatic environments, their chemical behaviour, and environmental fate.

View Article and Find Full Text PDF

Produced water management is a significant challenge for the oil and gas industry. Due to the large volumes and complex composition of this water, treatment requires special attention, resulting in high costs for companies in the sector. Naphthenic acids, known for their recalcitrance, add a layer of complexity to the treatment process.

View Article and Find Full Text PDF

This Perspective explores the transformative impact of ultrahigh-resolution mass spectrometry (UHR-MS), particularly Fourier transform ion cyclotron resonance (FT-ICR-MS), in the characterization of complex environmental and petroleum samples. UHR-MS has significantly advanced our ability to identify molecular formulas in complex mixtures, revolutionizing the study of biogeochemical processes and organic matter evolution on wide time scales. We start by briefly reviewing the main technological advances of UHR-MS in the context of petroleum and environmental applications, highlighting some of the challenges of the technology such as quantitation and structural identification.

View Article and Find Full Text PDF

The Athabasca oil sands region of Alberta, Canada contains one of the world's largest unconventional petroleum deposits. There is concern about residual contaminants where tailings are integrated during reclamation and the related adverse effects this may have. Some of the primary toxic organic contaminants in oilsands tailings are naphthenic acid fraction compounds (NAFCs).

View Article and Find Full Text PDF

Toxicity of crude oil-derived polar unresolved complex mixtures to Pacific herring embryos: Insights beyond polycyclic aromatic hydrocarbons.

Sci Total Environ

December 2024

Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education & Research Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA. Electronic address:

Crude oil toxicity to early life stage fish is commonly attributed to polycyclic aromatic hydrocarbons (PAHs). However, it remains unclear how the polar unresolved complex mixture (UCM), which constitutes the bulk of the water-soluble fraction of crude oil, contributes to crude oil toxicity. Additionally, the role of photomodification-induced toxicity in relation to the polar UCM is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!