Blood-brain barrier efflux transport of pyrimidine nucleosides and nucleobases in the rat.

Neurochem Res

Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.

Published: March 2009

The brain efflux index (BEI), a measurement of blood-brain barrier (BBB) efflux transport, was estimated at 15 s, 30 s, 1 min, 3 min and 10 min after intracerebral injection of [14C]pyrimidines. An initial steep increase of the BEI values over time was observed for [14]uracil and [14C]thymine, followed by a more moderate increase after 1 min. For the corresponding nucleosides, [14C]uridine and [14C]thymidine, the increase of BEI values over time was less steep and linear between 30 s and 3 min. The apparent BBB efflux clearances for [14C]uridine, [14C]thymidine, [14C]uracil and [14C]thymine were (microl/min/g): 95.2 +/- 12.1, 125.3 +/- 18.4, 290.4 +/- 28 and 358.5 +/- 32.5, respectively, which is at least several folds higher than the predicted BBB influx clearances of uridine, uracil and thymidine. Quick depletion of brain parenchyma from brain microvasculature has revealed that [14C] radioactivity accumulated in brain microvessels after injection of nucleosides [14C]thymidine and [14C]uridine, but that was not observed when nucleobases, [14C]thymine and [14C]uracil, were injected. Reverse transcriptase-PCR revealed that the rat brain and liver (positive control) express dihydropyrimidine dehydrogenase, a key enzyme in pyrimidine nucleobase catabolism. Two bands representing spliced variants have been detected with the relative density of the bands (expressed relative to the density of glyceraldehyde3-phosphate dehydrogenase bands, mean +/- SEM from 3 separate samples) 0.16 +/- 0.06 and 0.04 +/- 0.01 (brain) and 0.49 +/- 0.1 and 0.07 +/- 0.01 (liver). Overall, these results indicate that the net direction of pyrimidine BBB transport is the efflux transport; rapid BBB efflux transport and metabolic breakdown of pyrimidine nucleobases appear to be important for brain homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-008-9823-5DOI Listing

Publication Analysis

Top Keywords

efflux transport
16
bbb efflux
12
+/-
9
blood-brain barrier
8
rat brain
8
min min
8
increase bei
8
bei values
8
values time
8
[14c]uridine [14c]thymidine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!