RET activation inhibits doxorubicin-induced apoptosis in SK-N-MC cells.

Anticancer Res

Department of Pediatric Surgery, Children's Medical Center of Dallas, Dallas, TX 75235, USA.

Published: September 2008

Background: Medullary thyroid cancer (MTC) is generally resistant to chemotherapy and the frequent constitutive activation of RET (rearranged during transfection gene) in these tumors might inhibit drug-induced apoptosis.

Materials And Methods: Each RET isoform was separately expressed in SK-N-MC cells (neural crest-derived tumor) and the impact of RET activation on doxorubicin-induced apoptosis was examined.

Results: The activation of RET9 and RET51 in the SK-N-MC cells significantly reduced the doxorubicin-induced apoptosis by 50%, compared to untreated cells. RET activation also induced phosphorylation of ERK (extracellular regulated kinase), but no changes in AKT (serine/threonine kinase) phosphorylation were noted. In the presence of a MAP (mitogen-activated protein) kinase inhibitor or a RET kinase inhibitor, the RET-activated/drug-treated cells displayed nearly 75% and 100% of the doxorubicin-induced apoptosis of the drug-treated cells without RET activation, respectively.

Conclusion: In SK-N-MC cells, downstream activation of MAP kinase, by both RET9 and RET51, appears to mediate the majority of RET-dependent resistance to chemotherapeutically induced apoptosis. MTC might be rendered more responsive to chemotherapeutic agents by the co-administration of a RET kinase inhibitor.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ret activation
16
doxorubicin-induced apoptosis
16
sk-n-mc cells
16
kinase inhibitor
12
ret
8
ret9 ret51
8
cells ret
8
ret kinase
8
cells
7
activation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!