A 871-base pair cDNA encoding the human N-methylpurine-DNA glycosylase (MPG) was cloned from a HeLa S3 cDNA expression library in a pUC vector by phenotypic screening of MPG-negative (tag- alkA-) Escherichia coli cells exposed to methylmethane sulfonate. The active MPG is expressed as a 31-kDa fusion protein. The human cDNA-encoded MPG releases 3-methyladenine, 7-methylguanine, and 3-methylguanine from DNA and thus has a substrate range similar to that of the indigenous enzyme and the E. coli AlkA protein. The cDNA hybridizes with distinct restriction fragments of mammalian DNAs but not with E. coli or yeast DNA. A search in the GenBank data bank failed to show any other cloned DNA with a similar sequence. Although the human protein has 62% sequence homology with the corresponding rat enzyme, only a few amino acid residues are conserved between the human protein and the E. coli and yeast MPGs. However, a conserved glutamine residue in all MPGs that release 3-alkyladenine and an arginine residue in eukaryotic MPGs and E. coli AlkA that act additionally on N-alkylguanines suggest that these residues are involved in recognition of adenine and guanine adducts in DNA, respectively. Although the 1.1-kilobase mRNAs of MPG from human and rodents are similar in size, liver and cultured cells of rat have much lower levels of MPG mRNA than do human and mouse cells. A hamster cell line variant isolated as being resistant to methylmethane sulfonate does not have a higher level of MPG mRNA than the parent cell line.
Download full-text PDF |
Source |
---|
BMC Vet Res
January 2025
State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.
Escherichia coli has become a common causative agent of infections in animals, inflicting serious economic losses on livestock production and posing a threat to public health. Escherichia coli infection is common and tends to be complex in Xinjiang, a major region of cattle and sheep breeding in China. This study aims to explore the current status and molecular characteristics of Escherichia coli infection in cattle and sheep in Xinjiang, as part of the disease prevention and control strategy.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt.
Background: Liver transplantation (LT) is a critical intervention for individuals with end-stage liver disease; yet, post-transplant problems, especially infections, graft rejection, and chronic liver disease, are often linked to systemic inflammation. Cytokines, small signaling molecules, significantly influence immune responses during and post-liver transplantation. Nonetheless, the intricate relationships among cytokines, immune responses, and the gut microbiota, especially gut dysbiosis, are still inadequately comprehended.
View Article and Find Full Text PDFSci Rep
January 2025
Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA.
We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration (FDA), Jefferson, AR, U.S.A.
Infections associated with urinary catheters are often caused by biofilms composed of various bacterial species that form on the catheters' surfaces. In this study, we investigated the intricate interplay between Escherichia coli and Enterococcus faecalis during biofilm formation on urinary catheter segments using a dual-species culture model. We analyzed biofilm formation and global proteomic profiles to understand how these bacteria interact and adapt within a shared environment.
View Article and Find Full Text PDFEnviron Int
January 2025
School of Environment, South China Normal University, University Town, Guangzhou, China. Electronic address:
The extensive use of antibiotics has led to their frequent detection as residues in the environment. However, monitoring of their levels in groundwater and the associated ecological and health risks remains limited, and the impact of river pollution on groundwater is still unclear. This study focused on the highly urbanized Maozhou River and its groundwater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!