Maturation of human immunodeficiency virus particles assembled from the gag precursor protein requires in situ processing by gag-pol protease.

AIDS Res Hum Retroviruses

Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.

Published: May 1991

The vaccinia virus expression system was used to determine the role of human immunodeficiency virus type 1 (HIV-1) protease in viral morphogenesis and maturation. The unprocessed p55 gag precursor polyprotein alone was assembled to form HIV-1 particles which budded from cells. The particles were spherical and immature, containing an electron-dense shell in the particle submembrane; there was no evidence of core formation. Expression of both gag and pol proteins from a recombinant containing the complete gag-pol coding sequences resulted in intracellular processing of gag-pol proteins and the production of mature particles with electron-dense cores characteristic of wild-type HIV virions. To ascertain the role of protein processing in particle maturation, the pol ORF in the gag-pol recombinant was truncated to limit expression of the pol gene to the protease domain. With this recombinant expressing p55 gag and protease, intracellular processing was observed. Some of the resultant particles were partially mature and contained processed gag protein subunits. In contrast, particle maturation was not observed when the HIV-1 protease and p55 gag were coexpressed from separate recombinants, despite evidence of intracellular gag processing. These findings suggest that HIV-1 protease must be an integral component of the full-length gag-pol precursor for optimal processing and virion maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1089/aid.1991.7.475DOI Listing

Publication Analysis

Top Keywords

hiv-1 protease
12
p55 gag
12
human immunodeficiency
8
immunodeficiency virus
8
gag precursor
8
processing gag-pol
8
intracellular processing
8
particle maturation
8
gag
7
processing
6

Similar Publications

Enhanced sampling of protein conformational changes via true reaction coordinates from energy relaxation.

Nat Commun

January 2025

Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA.

The bottleneck in enhanced sampling lies in finding collective variables that effectively accelerate protein conformational changes; true reaction coordinates that accurately predict the committor are the well-recognized optimal choice. However, identifying them requires unbiased natural reactive trajectories, which, paradoxically, require effective enhanced sampling. Using the generalized work functional method, we uncover that true reaction coordinates control both conformational changes and energy relaxation, enabling us to compute them from energy relaxation simulations.

View Article and Find Full Text PDF

Indonesia has one of the highest HIV infection rates in Southeast Asia. The use of dolutegravir, an integrase strand transfer inhibitor (INSTI), as a first-line treatment underscores the need for detailed data on INSTI drug resistance mutations (DRMs). Currently, there is a lack of comprehensive data on DRMs INSTI and other HIV drug resistance in Indonesian patients, both pre- and post-treatment.

View Article and Find Full Text PDF

HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates.

J Chem Inf Model

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.

The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Visceral leishmaniasis (VL) is an opportunistic infection in HIV patients with higher relapse and mortality rate. The number of HIV-VL patients is comparatively higher in areas where both infections are endemic. However, the conventional chemotherapeutic agents have limited success due to drug toxicity, efficacy variance and overall cost of treatment.

View Article and Find Full Text PDF

The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!