Estrogens have been shown to both enhance and impair cognitive function depending on several factors, including regimen of hormone treatment, age of subject, and task attributes. In rodent models, estradiol tends to enhance spatial learning and impair response or cued learning, but effects on executive functions are less well-studied. In this experiment, spatial working memory and response inhibition were tested using delayed spatial alternation (DSA) and differential reinforcement of low rates of responding (DRL) tasks in ovariectomized rats that were given chronic estradiol via Silastic implants resulting in serum estradiol concentrations of 86.2 +/- 8.2 (SEM) pg/ml. Rats were tested for 25 days DSA with variable delays of 0, 3, 6, 9, and 18 seconds between lever presentations, followed by 30 days on a DRL-15s operant schedule. Estradiol-replaced rats showed a significantly lower proportion of correct responses on the DSA task compared to vehicle-implanted ovariectomized animals. On DRL, estradiol-treated rats showed a lower ratio of reinforced to nonreinforced presses. These data suggest that chronic estrogen exposure may impair rats' abilities on measures of executive function including working memory and response inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026023 | PMC |
http://dx.doi.org/10.1037/a0012513 | DOI Listing |
Cell Biol Toxicol
December 2024
Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, P.R. China.
The intraprostatic inflammatory infiltrate is characterized by Th1 CD4 T cells, and its molecular mechanism is not well defined. This study explored the mechanisms responsible for the alteration of Th1/Th17 differentiation of CD4 T cells in chronic non-bacterial prostatitis (CNP). CNP rats were induced by the administration of testosterone and 17β-estradiol.
View Article and Find Full Text PDFGynecol Obstet Invest
December 2024
Background: No conceptually new drugs for the safe and successful cure of endometriosis are likely to become available soon. Hormonal modulation of ovarian function and suppression of menstruation remain the pillars of disease control. However, existing drugs may be used following novel modalities to limit the consequences of endometriosis progression.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China.
To investigate the synergistic effect of astaxanthin and curcumin on ovarian function in polycystic ovary syndrome (PCOS) mice and to elucidate the underlying mechanisms, fifty 4-week-old female mice were randomly divided into five groups: (i) normal control group; (ii) PCOS model group; (iii) PCOS + astaxanthin group; (iv) PCOS + curcumin group; and (v) PCOS + astaxanthin-curcumin. Throughout the study, various parameters were meticulously evaluated, including serum levels of key reproductive hormones (testosterone (T), estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and anti-Müllerian hormone (AMH)), as well as monitoring alterations in the estrous cycle, follicle development, and ovulation rates. Additionally, markers of oxidative stress and inflammation were measured.
View Article and Find Full Text PDFFront Neurol
December 2024
Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States.
Biol Psychiatry Glob Open Sci
January 2025
Department of Psychiatry, New York University Grossman School of Medicine, New York, New York.
Background: An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response.
Methods: We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!