Fipronil is an urban-use insecticide, and the increased use has led to its frequent detections in urban streams. Most studies on the environmental fate of fipronil so far have focused on soils, and little is known about its behavior in sediment-water systems. In this study, we investigated the transformation and sorption of fipronil in urban stream sediments from California, incubated under facultative and anaerobic conditions. Degradation of fipronil in sediments generally followed exponential decay kinetics, and the first-order half-lives of fipronil were only 4.6-18.5 days in anaerobic sediments. The persistence of fipronil under facultative conditions was considerably longer, with half-lives from 25 to 91 days. Sterilization generally decreased the dissipation of fipronil, indicating that microbial activity was an important factor in fipronil transformations in sediments. Under facultative conditions, fipronil sulfide and sulfone were observed, while only fipronil sulfide was detected in anaerobic samples. The sorption coefficient K d consistently increased with organic carbon contents of sediments. In the same sediment, K d usually also increased with contact time, suggesting decreased availability for aged residues. Results from this study showed that the stability of fipronil in sediments depends closely on the oxygen status and that due to the readily conversion of fipronil to the sulfone and sulfide metabolites, the overall risk assessment of fipronil in surface aquatic systems should take into consideration fipronil as well as its metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf8018886 | DOI Listing |
J Chromatogr A
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, and Medical Science and Technology Innovation Center, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:
Considering the widespreadly use, large consumption, and serious environmental and health threats of phenylpyrazole insecticides (PPIs), development of a selective and sensitive method for accurate detection of their residuals in food samples is of great significance and challenging. Herein, depending on the hydrophobic and F-containing characteristics of PPIs, a novel fluorinated magnetic microporous organic network (FMMON) was designed and prepared for efficient and selective magnetic solid-phase extraction (MSPE) of two typical PPIs (fipronil and ethiprole) from milk and egg samples before the HPLC-UV determination. FMMON owned large specific surface area, multiple interaction sites, excellent magnetic separation performance and stability and exhibited good extraction and selectivity for fipronil and ethiprole through the specific F-F, hydrogen bonding, hydrophobic, and π-π interactions.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
The current research focused on the synthesis of two series of pyrazole derivatives and evaluation of their insecticidal effectiveness. In the first series, seven pyrazole Schiff bases 3a-g were successfully synthesized with yields (79-95%) by condensing phenylfuran-2-carbaldehyde with substituted pyrazole rings. In the second series, eleven amino acid-pyrazole conjugates 6a-k were synthesized utilizing acetic acid, sulfuric acid, morpholine, and EDC.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK. Electronic address:
The brown planthopper Nilaparvata lugens is one of the most economically important pests of cultivated rice in Southeast Asia. Extensive use of insecticide treatments, such as imidacloprid, fipronil and ethiprole, has resulted in the emergence of multiple resistant strains of N. lugens.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Hubei Three Gorges Laboratory, Yichang 443000, China.
Nano-TiO as an antimicrobial inorganic material, can stimulate cells to produce reactive oxygen species and exhibit effective biochemical properties; however, phenylpyrazole derivatives, as organic pesticides, are widely used in agriculture and food. To find novel pesticides with environmental friendliness, combined with three-dimensional quantitative structure-activity relationship (3D-QSAR) prediction analysis, three types of alkaloidal phenylpyrazole amine derivatives (PA) were synthesized by a one-pot microwave method. Based on the dye sensitization strategy, four nano-organometallic pesticides (PT) were prepared by organic-inorganic hybridization.
View Article and Find Full Text PDFCien Saude Colet
December 2024
Laboratório de Análises de Resíduos de Pesticidas, Departamento de Química, Universidade Federal de Santa Maria. Santa Maria RS Brasil.
Brazil, one of the world's largest agricultural producers and consumers of pesticides, has expanded its agricultural area in the southern region of Mato Grosso do Sul, intensifying environmental contamination and increasing the vulnerability of indigenous populations. This research assessed the presence of pesticides in the waters of two indigenous communities in MS, Retomada Guyraroká and Aldeia Jaguapiru. Between 2021 and 2022, three sampling campaigns of surface, supply, and rainwater were conducted, considering the agricultural calendar.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!