The synthesis and evaluation of a series of 2-amino-3-(4-chlorobenzoyl)-4-[4-(alkyl/aryl)piperazin-yl]thiophene derivatives as allosteric enhancers of the A 1-adenosine receptor are described. The nature of substituents on the phenyl ring tethered to the piperazine seem to exert a fundamental influence on the allosteric enhancer activity, with the 4-chlorophenyl 8f and 4-trifluoromethyl 8j derivatives being the most active compounds in binding (saturation and displacement experiments) and functional cAMP studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm800586p | DOI Listing |
Br J Pharmacol
January 2025
Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Background And Purpose: The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ protein, likely through the inhibition of G-protein gated K (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs.
Experimental Approach: We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ.
Mol Ther Oncol
March 2025
Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany.
In this work, we report the discovery and engineering of allosteric variable domains of the heavy chain (VHHs) derived from camelid immunization targeting NKp30, an activating receptor on natural killer (NK) cells. The aim was to enhance NK cell-mediated killing capacities by identifying VHHs that do not compete with the natural ligand of NKp30:B7-H6, thereby maximizing the recognition of B7-H6 tumor cells. By relying on the DuoBody technology, bispecific therapeutic antibodies were engineered, creating a panel of bispecific antibodies against NKp30xEGFR (cetuximab moiety) or NKp30xHER2 (trastuzumab moiety), called natural killer cell engagers (NKCEs).
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China.
-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by -(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their characterization and further advancement.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Department of Translational Neuroscience, Center for Addiction Research, Wake Forest University School of Medicine, 115 South Chestnut St, Winston-Salem, NC, 27101, USA.
Background: Cocaine Use Disorder (CUD) remains a significant problem in the United States, with high rates of relapse and no present FDA-approved treatment. The acetylcholine neurotransmitter system, specifically through modulation of muscarinic acetylcholine receptor (mAChR) function, has shown promise as a therapeutic target for multiple aspects of CUD. Enhancement of the M mAChR subtype via positive allosteric modulation has been shown to inhibit the behavioral and neurochemical effects of cocaine across several rodent models of CUD.
View Article and Find Full Text PDFLeukemia
January 2025
The Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
The FLT3 gene frequently undergoes mutations in acute myeloid leukemia (AML), with internal tandem duplications (ITD) and tyrosine kinase domain (TKD) point mutations (PMs) being most common. Recently, PMs and deletions in the FLT3 juxtamembrane domain (JMD) have been identified, but their biological and clinical significance remains poorly understood. We analyzed 1660 patients with de novo AML and found FLT3-JMD mutations, mostly PMs, in 2% of the patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!