Sorption and desorption of phenanthrene onto iron, copper, and silicon dioxide nanoparticles.

Langmuir

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.

Published: October 2008

The sorption and desorption of phenanthrene by three engineered nanoparticles including nanosize zerovalent iron (NZVI), copper (NZVC), and silicon dioxide (NSiO2) were investigated. The sorption of phenanthrene onto NSiO2 was linear and reversible due to the hydrophilic properties of NSiO2. In comparison, sorption of phenanthrene onto NZVI and NZVC was nonlinear and irreversible, which was potentially due to the existence of significantly heterogeneous surface energy distribution patterns detected by a standard molecular probe technique. Naphthalene exerted significant competitive sorption with phenanthrene for NZVI and NZVC, and the isotherm of phenanthrene changed from being significantly nonlinear to nearly linear when naphthalene was simultaneously absorbed. A surface adsorption mechanism was proposed to explain the observed sorption and competition of phenanthrene on both NZVI and NZVC. In contrast, no competition was observed for sorption onto NSiO2. The sorption of phenanthrene on all three nanoparticles significantly decreased with increasing pH. The sorption irreversibility of phenanthrene on NZVI and NZVC were significantly enhanced with decreasing pH. A pH-dependent hydrophobic effect and dipole interactions between the charged surface (electron acceptors) and phenanthrene with electron-rich pi systems (electron donors) were proposed to explain the observed pH-dependent sorption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la801459sDOI Listing

Publication Analysis

Top Keywords

sorption phenanthrene
16
phenanthrene nzvi
16
nzvi nzvc
16
sorption
10
phenanthrene
10
sorption desorption
8
desorption phenanthrene
8
silicon dioxide
8
phenanthrene three
8
proposed explain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!