In micellar solutions, one-electron reduction of *O2(-) radical-anions by 3-alkylpolyhydroxyflavones (FnH) with alkyl chains of n = 1, 4, 6, 10 carbons produces phenoxyl radicals ( (*Fn) identical to those obtained by one-electron oxidation by *Br2(-) radical-anions or by repair of tryptophan radicals. In cetyltrimethylammonium bromide (CTAB), F1H localizes in the Stern layer, and alkyl chains of other FnH solubilize in the hydrophobic interior, interacting with cetyl tails. This interaction produces more compact micelles with lower intramicellar fluidity, as suggested by the increase in the pseudo-first-order rate constant of *Fn formation ( k 1) from approximately 390 s (-1) for n = 1 to 610 s (-1) for n = 10, leading to an intramicellar bimolecular rate constant of 1 x 10 (5) M (-1) s (-1). Additionally, *F1 and *F4 decay by intermicellar bimolecular reaction (2 k = 20 and 2 x 10 (5) M (-1) s (-1), respectively) whereas other *Fn radicals are stable over seconds due to increased localization with regards to the Stern layer. In contrast, the thick uncharged hydrophilic palisade layer and the compact hydrophobic core of Triton X100 micelles are responsible for a much higher microviscosity resulting in a decrease in k 1 from approximately 15.6 s (-1) for n = 1 to 9.6 s (-1) for n = 10.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp805889g | DOI Listing |
Biomolecules
December 2024
Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, 84084 Fisciano, Italy.
In this review, we focus on the one-electron oxidation of DNA, which is a multipart event controlled by several competing factors. We will discuss the oxidation free energies of the four nucleobases and the electron detachment from DNA, influenced by specific interactions like hydrogen bonding and stacking interactions with neighboring sites in the double strand. The formation of a radical cation (hole) which can migrate through DNA (hole transport), depending on the sequence-specific effects and the allocation of the final oxidative damage, is also addressed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H-(TAML-4) {H-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of Ni, Ni, and Ni were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of Ni was characterized to be [Ni(TAML-4)] with the oxidation state of the Ni ion and the one-electron oxidized TAML-4 ligand, TAML-4. The Ni oxidation state and the TAML-4 radical cation ligand, TAML-4, were supported by X-ray absorption spectroscopy and density functional theory calculations.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, D-85747, Garching, Germany.
Despite the first examples being isolated more than two decades ago, little is known about the redox chemistry of stable phosphacyclic biradicaloids. Here, we demonstrate that a biradicaloid featuring a diphosphaindenyl backbone is able to undergo both oxidation and reduction reactions. One-electron oxidation results in the formation of a dicationic cage compound structurally related to an isomer of hypostrophene (CH).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States.
Molecular Zr phosphides are extremely rare, with no examples containing a one-coordinated and terminal triple-bonded phosphorus atom. We report here an isolable and relatively stable Zr phosphide complex, [(PN)Zr≡P{μ-Na(OEt)}] (), stemming from a cyclometalated Zr-hydride, [(PN)(PN')Zr(H)] (), and NaPH. Complex is prepared from two- or one-electron reductions of precursors [(PN)ZrCl] () or metastable Zr[(PN)ZrCl], respectively.
View Article and Find Full Text PDFSmall
January 2025
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.
Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (HO) photoproduction through two-step one-electron oxygen reduction reaction (ORR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!