The reduction of starch accumulation in transgenic sugarcane cell suspension culture lines.

Biotechnol J

Institute of Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa.

Published: November 2008

Starch only occurs in small amounts in sugarcane, but is, nevertheless an unwanted product because it reduces the amount of sucrose that can be crystallized from molasses. In an attempt to reduce the starch content of sugarcane, the activities of ADP-glucose pyrophosphorylase (AGPase) and beta-amylase were manipulated using transgenic approaches. Transformation vectors to reduce AGPase activity and to increase plastidial beta-amylase activity were constructed and used for the transformation of sugarcane calli. The results of the manipulations were analyzed in suspension cultures. AGPase activity was reduced down to between 14 and 54% of the wild-type control. This led to a reduction in starch concentration down to 38% of the levels of the wild-type control. beta-Amylase activity was increased in the transgenic lines by 1.5-2 times that of the wild-type control. This increase in activity led to a reduction in starch amounts by 90% compared to wild-type control cells. In both experiments, the changes in starch concentrations could be correlated with the change in enzyme activity. There were no significant effects on sucrose concentrations in either experiment, indicating that these approaches might be useful to engineer regenerated sugarcane for optimized sucrose production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.200800106DOI Listing

Publication Analysis

Top Keywords

wild-type control
16
reduction starch
12
agpase activity
8
beta-amylase activity
8
led reduction
8
activity
6
sugarcane
5
starch
5
starch accumulation
4
accumulation transgenic
4

Similar Publications

EGFR and ALK are key driver mutations in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors are recommended as the first-line treatment for advanced NSCLC with driving oncogenes because they have fewer side effects and provide better disease control than chemotherapy. The present retrospective analysis aimed to investigate how altered driver genes impact cancer outcomes and clinical presentation.

View Article and Find Full Text PDF

Approaches to mitigate the severity of infections and of immune responses are still needed for the treatment of cystic fibrosis (CF) even with the success of highly effective modulator therapies. Previous studies identified reduced levels of melatonin in a CF mouse model related to circadian rhythm dysregulation. Melatonin is known to have immunomodulatory properties and it was hypothesized that treatment with melatonin would improve responses to bacterial infection in CF mice.

View Article and Find Full Text PDF

Identification of Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.

J Proteome Res

January 2025

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.

As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.

View Article and Find Full Text PDF

The worldwide incidence of colorectal cancer (CRC) is roughly two million new instances each year throughout the world, according to the World Health Organization 2022. CRC is the third most prevalent disease and the second most common cancer in terms of fatality. People diagnosed with colorectal cancer in the early stages have a five-year survival rate of roughly 95%, but people identified with the disease in the later stages have a survival rate of approximately 12%.

View Article and Find Full Text PDF

Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!